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PREFACE

During the academic year 1908-9 the author was privileged to give as a
part of his work at the University of Michigan a course of lectures on infinite
series, with especial reference in the second semester to divergent series—a
subject which, despite the uncertain value so long attached to it, seemed clearly
to be coming into increasing prominence and importance in mathematical
analysis. Little was accomplished, however, as regards divergent series beyond
the merest beginning; yet this was sufficient to awaken a desire to continue
farther and this in turn resulted in a course being given throughout the whole
of the following year devoted entirely to divergent series and the related topic
of summability. But this year also closed with much less ground satisfactorily
covered than had been expected, unforeseen difficulties having arisen from time
to time, some due to the inherent complexities of the subject in hand and others
to the somewhat hastily conceived and hence unsatisfactory state in which
much of the related literature was found to be. Thus the course still seemed
altogether incomplete. It was therefore decided to continue it once more
throughout the following year, 1910-11, and indeed for a like reason it was
finally continued throughout 1911-12. As the lectures and class-room dis-
cussions progressed, permanent notes were kept in the hope that the whole might
possibly pass through the press at some future time and appear in book form—
a hope which, after various delays during which the original notes have been
considerably supplemented, now reaches its realization in the appearance of the
present volume. In its final form it certainly presents a large mass of detail
and is doubtless open to criticism in many respects, but it does not seem advisable
to attempt any further defence for it than is contained in the remaining sections
of this preface wherein, after certain generalities, the content and motive of the
various chapters are discussed in some detail.

Speaking roughly, the study of divergent series, at least as the author has
come to conceive of it, may be divided into two parts, the one concerning the
so-called asymplotic series and the other the theory of summability. Of these the
first, representing the older aspect, originated in an isolated note by Caucay
in 1843! relating to the well-known series of Stirling for log I'(z), viz.:

Bil_ By 1, Byl _

122 3427 T 562

(Bm = mth Bernoulli number.)

(1) logT(z)=4%log2r+ (x—3)logz—=

CaucHY pointed out that this series, though divergent for all values of z, may be

1 “Sur I'emploi légitime des séries divergentes,” Compt. Rend. de I’ Acad. des Sciences, Vol. 17,

pp. 370-376. .
vii



viil PREFACE

used in computing log I'(x) when z is large (and positive)—in fact, it was shown
that, having fixed the number # of terms taken, the absolute error committed by
stopping the summation at the nth term is less than the absolute value of the
next succeeding term, and hence becomes arbitrarily small (n > 3) with in-
creasing z. CAUCHY’S work on divergent series was confined, however, to the
single series (1) and, owing to the emphasis placed upon convergent processes
exclusively by the successors of CAuCHY and ABEL, no further progress was made
in this interesting field until the subject at last reappeared after more than forty
years in connection with the researches of PoINCARE upon the irregular solutions
of linear differential equations.? PoINCARE considered those divergent series
(normal series) of the form o

@ SOt afztafd ) T (’2 _ f:fzxn’;fml o

which for some time had been known to satisfy formally linear differential equa-
tions of certain types having the point 2 = o« as an “ irregular ”’ point, and he
showed essentially that in general to every such formal solution there corre-
sponds an actual solution which can be represented by (2) in much the same sense
as (1) was described above as representing log I'(z).? In view of the important
significance of such results both from the standpoint of the possible use of di-
vergent series as well as from that of the theory of differential equations, Poin-
CARE set apart and discussed in some detail a broad class of divergent series of
the special form (2), applying to them the name of ““ asymptotic series.” Poin-
CARE’s results, however, in so far as they concerned differential equations, were
noticeably incomplete, being limited by certain unfortunate restrictions, and thus
his original studies have given rise in later years to numerous researches, notably
by HorN, in which noteworthy advances have been made, though open questions
in this connection still remain. Corresponding investigations (likewise begun by
PoINCARE) pertaining to linear difference equations have been undertaken in
recent years and carried to an advanced stage by HorN, NORLUND, and others.
Meanwhile an important aspect of the theory of asymptotic series has come into
view, especially in England under the leadership of BARNES and HaRDY; namely,
that of actually determining the asymptotic developments of a given function—
a problem of decided interest for the study and classification of functions in gen-
eral. This latter aspect of the subject presents a high degree of complexity
and doubtless has made hardly more than a beginning at the present time. In
fact, it has thus far been approached only by confining the attention to a very
limited number of special functional types.*

2 “8ur les intégrales irrégulieres des équations linéaires,”” Acta Math., Vol. 8 (1886), pp. 259—
344. Mention should be made also of STIELTIES who simultaneously with PoiNcARE resumed the
study of divergent series, confining his attention, however, to the computational aspects of certain
special series. (Thesis, Ann. de 'Ec. Nor. (3), Vol. 3 (1886), p. 201.)

3 For the more accurate statements, see Chap. 1II.

¢ For details, see Chap. II.
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The theory of summability, or second general aspect of divergent series
mentioned above, is essentially concerned with the question as to whether in
any proper sense & “ sum ” may be assigned to the series, assumed divergent,

@) ga,..

This question has been scientifically attacked only within comparatively recent
years, the most common avenue of approach being through the so-called boun-
dary-value (Grenzwert) problem in the theory of analytic functions.® Thus
FroBEN1US, without having in view the study of divergent series, showed in the
first place that if one has a power series whose radius of convergence is equal to 1:

4 D a.z*;  r = radius of convergence = 1

and writes s, = ao+ a; + -+ + an, then

®) lim 3 agn = mRE At ot

z=1—0 n=0 A= n+1

whenever the indicated limit on the right exists.® Now, the first member of (5)
is naturally associated with the corresponding series (3) (in general divergent)
obtained by placing # = 11in (4). Thus, at least if one confines the attention to
divergent series (3) of the particular type just mentioned, it becomes natural to
assign sums in accordance with the formula

RTINE R o2 B i o
©) s=lm ="
whenever the indicated limit exists. Moreover, this formula finds additional

justification in the demonstrable fact that for any convergent series (3) the sum,
regarded in the ordinary sense, viz., 8 = lim s,, agrees with that given by (6)—
n=a0

<. e., formula (6) is consistent. Aside from this one formula (6) many others are
now known which serve with more or less appropriateness to define the sum of a
divergent series, both when the series is of the special type above mentioned and
when otherwise. To what ultimate extent these formulas are appropriate, how
far the theories of summability erected upon them serve any justifiable purpose
in analysis, whether the different sums thus assigned involve mutual incon-
sistencies—these and other questions may well be asked and more will be said on
this point presently.” Suffice it to say here that formula (6) has been found in

§ For an elementary description of the problem, see JARRAUS, “Das Verhalten der Potenz-
reihen auf dem Konvergenzkreise historisch-kritisch dargestellt.” Program des Gymnasiums
Ludwigshafen (1901), pp. 1-66. See also Knorp, “ Grenzwerte von Reihen bei der Ann&herung
an die Konvergenzgrenze.” Dissertation, Berlin, 1907.

¢ “Ueber die Leibnitzsche Reihe,” Jour. fur Math., Vol. 89 (1880), pp. 262-264.

7 Interesting comments by PrINGSHEIM relative to such questions are to be found in Vol. I
of the “Encyklopddie der math. Wissenschaften,” §§ 39—40.
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particular to yield interesting and valuable results when applied to Fourier series
and the other important allied developments in mathematical physics — develop-
ments in terms of Bessel functions, Legendre functions, etc. Such applications
alone go far toward assuring a permanent place in analysis to the theory of
summability as now commonly understood.

Turning now more specifically to the contents of the present volume, Chapter I
considers certain aspects of the so-called Maclaurin Sum-Formula, the especial
aim being to develop and summarize into actual theorems those results which
are of importance in this connection to the study of divergent series. These
when once obtained are of particular service in the problem of determining the
asymptotic developments of a given function, and it is to this that Chapter II
is then devoted. Beginning with very easy illustrative studies, the Chapter
proceeds to problems of greater and greater difficulty and eventually treats
the general problem already considered by various investigators of determining
the asymptotic developments of the general integral (entire) function of rank p
(order > 0), following which, at the close of the chapter, the problem of deter-
mining the asymptotic developments of functions defined by power series is
briefly considered. Chapter III concerns the asymptotic solutions of linear
differential equations and is an attempt to summarize briefly and without proof
what are deemed to be the most essential results thus far known in this field,
with mention also of the corresponding results obtainable in the study of linear
difference equations, and with indications as to certain open questions still
remaining in both connections. Chapter IV considers the theory of summability
with the especial attempt, as in previous chapters, to single out what seems most
essential. More specifically, it makes an examination of a few of the standard
definitions of “ sum ”’ with the idea of subjecting each to a number of tests which,
as the author has come to view the subject, every such definition should satisfy.
For example, it is well known that if a really logical general theory of summa-
bility is ever to be constructed it cannot include all definitions of sum that satisfy
merely the condition of consistency (§ 37) since this alone does not insure unique-
ness of sum. Therefore, observing the genesis of the whole subject from the
boundary value problem as described above, it is proposed to arbitrarily limit
the general theory to those series (3) for which the corresponding power series (4)
has a radius of convergence equal to 1 and then retain only such definitions of
sum as give the unique value .

. s = lim 2 a.z™
£2=1—0n=0
Definitions which do this are said to satisfy the boundary value condition (§ 39).
Such definitions not only all give the same sum to a given series (convergent or
divergent) (3), but they at once serve a useful purpose in analysis from the fact
that they frequently come to furnish the analytic continuation of the series (4)



PREFACE xi

over some portion of its circle of convergence, or indeed in some cases, as in the
definitions of BoRrEL, throughout regions lying entirely outside that circle. How-
ever limited the scope of a general theory of summability as thus conceived, it
at least has perfect definiteness and logical coherence and finds immediate use-
fulness in the theory of functions of a complex variable, and we venture the
opinion that some such characteristics as these must be preserved in any general
theory of summability that is to retain a permanent place in analysis.® No
attempt will be made here to describe the other tests which Chapter IV sets up,
but it should be remarked that only a few of the standard definitions of sum
are tested out since they suffice to illustrate the spirit of the undertaking. The
chapter closes with a brief account of absolutely summable series and a state-
ment of certain supplementary theorems and corollaries upon summability in
general. .

A most important aspect of the theory of summability, as the author regards
it, lies in its applications mentioned above to Fourier series and other allied
developments in mathematical physics, and this forms the subject of Chapter V.
For the sake of completeness the treatment is made to include both convergence
and summability. It is based upon a general method for the study of all such
developments due to DINI and appearing, though in somewhat diffuse and
inaccessible form, in his great work entitled “ Serie di Fourier e altre rappre-
sentazioni analitiche delle funzioni di una variabile reale ”” (Pisa, 1880). Din1
naturally considered at the time of his investigations only the question of con-
vergence (not including uniform convergence), but his methods are here shown
to be readily extended so as to be applicable to studies in summability. Especial
effort has been made here as in the other chapters to summarize all essential
conclusions from time to time into actual theorems.

To Professor Alexander Ziwet the author would here express his deep grati-
tude. Not only has the book enjoyed the benefits of his critical judgment in
many ways, but his sympathy and kindly interest have served as a constant en-
couragement, and indeed they are responsible in no small measure for the ap-
pearance of the whole in its present form. The author is much indebted also
to his colleagues Professors C. E. Love and Tomlinson Fort, the former for
various suggestions and criticisms, and the latter for the valuable aid he has
rendered in reading the proofs.

ANN ARBOR,

April, 1915

8 The adoption of any one definition for “summable series” evidently involves the excluding
of many series previously classed as summable; yet we believe the time has arrived when a single
universal definition should if possible be agreed upon, however disastrous its immediate effects
upon one or more of the special forms of definition now current. The present situation in this
matter is strikingly analogous to the state of confusion which led CaucrY and ABEL to the formu-
lation of their universal definition for ‘“convergent series,” notwithstanding the exclusions brought
about and the consequent objections urged by contemporary mathematicians.






CHAPTER 1

THE MACLAURIN SUM-FORMULA, WITH INTRODUCTION TO THE STUDY OF
ASYMPTOTIC SERIES

1. The following formula (Maclaurin Sum-Formula!)

3 1@ = [ 1@z - 3150 - f1 + 2L - f@)

o 3 —1)m m—lhh-’
O B @)+ o+ C e e0) — £

+ .. B, = mth Bernoullt number

plays an important part in the modern theory of divergent series and we shall
therefore begin by pointing out certain facts (cf. Theorems I, II, III and IV)
connected with its legitimate use. These will form the basis of the studies
undertaken in Chapter II.

Following the discussion of (1), we shall also give in the present Chapter
(cf. §§ 13-17) an outline of the general theory of asymptotic series as originally
developed by PoINCARE in his classical memoir in the Acta Mathematica (1886),
the elements of this theory being likewise needed for the proper development
of Chapter II. )

2. In order to carry out the desired studies relative to the formula (1), let
us begin by supposing that there is given any function u. (real or complex) of
the real variable = which, together with its first 2m+1 derivatives, is continuous
within a certain interval (a, b). Forany valueof zsuchthata =z =2+ k< b
(b = constant) we may then write

— ’ h’ ” hh (2m)
Au, = Usph — U = hu, +-2-!'u, + .- +Z2m_)lu’

=

as appears directly upon applying an integration by parts 2m times to the last
term in the second member.

More generally, it appears in like manner that when 0 =k =2m — 1 we
may write ’

)

1 Known also as the Euler sum-formula. For comments upon the historical aspect of the
subject, see BARNES, Proceedings London Math. Soc. (2), Vol. 3 (1905), p. 253.
2 1
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a Au.® = py ) B (e+2) 4 L E—
U = hus 0 A s ot =i
@® AT
+ (_i_u(-ﬂ)
(] (2m - k)l =+s ’
while the corresponding formula for the case k = 2m is

@ s = [ v,

Whence if Hy, Hy, Hs, - -+ Ham be the 2m + 1 constants determined by the
equations

hh—b

H0=1, H’ﬂ=0)

%) H., H,, H, H, -1 <
[Hk"" + Tt utEroic 6 1sksm—1

2! 3!
we shall have
> = Hyh*(h — z)*
— B! kA, (B) — (Bm+1)
hu, +§'th Au, j:u,,,,* & Em—hn] dz
or
2m
(6) huy' = 2 Hik*Au,® + ru(z, h)
k=0
where - \ \
Hkx(h — z)*
= — myn) SRR 7 377
)] rm(z, B) = j:u,.“ & @m=RI da.

Formula (6) bears a close relation, as we shall see, to the Maclaurin Sum-
Formula (1).

We first proceed to determine the values of the constants H;, noting certain
changes which thereby become possible in the form of (7).

If we place

He™ Hph™'  HE?  Hihb
em@) = o1t e —Di T en—i T En—aiT

@®
TLL S L A
and Hb™ | Hbs Hap b
_ 1 5 .. 2m—1 3
we have

rules B) = = [ 452 Upan(h  5) + Vaulh — 9l

Let us now develop ¢sm(h — 2) + Yem(h — 2) in ascending powers of z. We
obtain
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2m hk(h —_— z)h—k
Ok — 2) + Yam(h — 3) = E;Hn ————(2m Z il
n—t h2m—iy h"""z’ m—j H,
",ZJ.H" PINCR o - ,z,;.( T @me k=PI
But from (5) we have
2m—4 Hk . . 1 Hb _
é Gm—k—31 " 0+ Him—j = Hem—; (jF2m—1); .Z;(l—k)l_ H,.
Whence,
H ™ H le""_ 1 R2 it

= @m(2) — ¥am(2).
Thus, if we place z = /2 we obtain

() (B)s m(d)-0

The last relation, however, cannot exist for all positive integral values of m unless
the coefficients of the various terms of Yaw(z) are each equal to zero. Hence,

(10) Hi=Hy=H;= - = Hyy =0,
and we obtain the relations
(11) Tm(z, B) = — f Urs pm(h — 2)da,
a2 Qim(h = 2) = pun(2).
As to the coefficients Hy, H,, Hy, Hg, - - - Hap—3, we have?
(- 1t

(13) H,= -1}, Hz'=WB,; r=123 :--(m—1)
where B, is the rth Bernoulli number.

3. We now proceed to establish the two following properties of the functions
¢2m(2) (commonly known in case & = 1 as the functions of Bernoulli):

(a) “ The function ¢sm(z) does not change sign between z = 0 and 3 = % and
is positive in this domain when m is even and negative when m is odd.”

(b) “ The expression |pam(z)| when considered for values of z between z = 0
and z = h has its maximum value at z = 4/2.”

2 This result like others which concern the well-known properties of the Bernoulli numbers

and functions, will here be presupposed. For a proof, see MALMSTEN, Journ. fur Math., Vol. 35
(1847), p. 64.
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For the proof of (a) let us consider the expression
, _ zzm—a thzzm—d H2h2zh—5 H‘h-lzzm—'l
i@ = G i T emn— it Gm—5) T Gm=mi T

H!m—d f2m—6,3

+ '—-31— + Hthh—‘z.

Supposing for the moment that this is positive whenever 0 < z < k/2, let us
multiply it by A?"dk and integrate from A =% to A = 4+ . The result,
except for the factor k>, is

s Hyh Hazh?
em—)Cmn-D T Gm—dien—2)  Gn-51emn—3 1

HHZahH Hg...ﬁh*‘
T35 T 13

and this must likewise be positive when 0 < z < k/2. Let us now multiply
the last expression by dz and integrate from z = z to z = k/2. We obtain

2 s 2

[0 o] - o (3) _

(SR )

But ¢,,.(h/2) = 0, as follows from (12). We therefore conclude that if ¢,,_,(z)
is positive when 0 < z < h/2, then ¢;.(z) is negative throughout the same
domain. Now, ¢:(z) = 22/2 — zk/2, ¢4(z) = z — h/2. Whence, ¢;,(z), con-
sidered for values of z within the indicated interval, will be positive or negative
according as m is even or odd, while the expression

Pm(z) = j; Pam' (2)d5

will be positive if m is even and negative if m is odd. It follows from (12) that
@2m(2) has the indicated properties for the interval 0 < g < h.

Concerning (b) we note that if m is even we have shown that ¢em’(2) is positive
when 0 < z < h/2 and that ¢,,(k/2) = 0. Moreover, since

P1n(®) = — @yu(h — 2),

the same function is negative when %/2 < 3 < h. Thus, the statement in
question follows from elementary considerations in the theory of maxima and
minima. Likewise we reach the same result when m is odd, since ¢;,(z) is then
negative from z = 0 to z = A/2 and positive from z = k/2 to z = h.
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4. These results being established, we return to formula (6). In this formula

let us take
Uz = j‘. f (x)dx:

where f(z) together with its first 2m derivatives is continuous from z = a to
z = b. Then u, together with its first 2m + 1 derivatives will be continuous
within the same interval so that for any value of = for whicha =2 <z+ h=0b
we shall have (cf. (5), (11), (13))

sz4-A 2
o) = [ f@de =3 e+ b = @)+ 5 fe+ h = @)
4
(14 — B e by — @1+
— m 2m—2 .
+ e T O+ B) = fO9@)] + e, B,

where

(15) tm(z, B) = — j: @ (z 4+ 2)pam(z)dz.

Let us now suppose that b — a is an integral multiple of 4, ¢. ¢., b — a = nk
and allow x to take successively the values a,a + &, a4+ 24, --- a + (n — 1)A.
By adding the corresponding results (14) and dividing by & we obtain

;;iof(a + qh) = ’z;;f(x) = %ff(x)dx —_ *[f(b) — f(a)]
(16) + %%'[f'(b) —_ f’(a)] — % [f"'(b) _ f"'(a)] oo

-— m 2m—3
+ (12),,,19—"*5;3 [fE=D(b) — f*™9(a)] + Rm,

where
1 b—A
an Ba= =1 [ 2 1%+ dommie)in
By placing m = o we thus arrive at formula (1) provided, however, that
im Rm =02

5. We proceed to consider certain properties of the remainder R, correspond-
ing to the cases in which f(z) is real. From result (a) of § 3 we may apply the

3 For noteworthy cases in which this condition is fulfilled, see MarkoF®’s * Differenzen-
rechnung ”’ (Leipzig, 1896), Chap. 9, § 8.
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first law of the mean for integrals and write

b—l

R...-—Z f‘”")(a:+0h)j“¢z,,.(z)dz; 0<o<l1

or, since* -
(= 1)™HB,wH
a®) — [ omras = SIS

we shall have
_ l "'HBmhh 5—A
(19) R.= 28 ()2m‘)1 Z f*a + oh).
Whence, also
B, ke -1<6K<1
(20) Rp =0 —+ 2m)! (b a) M {M§|fh(3)l, a=z=)b,

so that we reach in summary the following result:

“If f(x) be any (real) function of the real variable z which together with
its first 2m derivatives is continuous within the interval (a, b) we may write
formula (16) in which, if M represents a value as great as the maximum value of
|[f®(z)| within the same interval, the expression R, satisfies relations (19)
and (20).”

6. Other important forms for the remainder in the Maclaurin sum formula
may be obtained when further hypotheses are placed upon f(z). Thus, let us
suppose in the first place that f®(z) does not change sign between z = a and
z = b. By applying the first law of the mean for integrals we may then write

Ba= T om0 [ T 1o + s
(21) B
= T:p,,.(oh)[f(""”(b) —f®N@)]; 0<0<1.
Whence, by (a) and (b) of § 3,
(22) By = :hle«pm (g) [f®D(@}) — f®™D@)]; 0<O6<L1.

Moreover, from (8) and (13) we have

h 1 1 1 1 1 B: 1 1

""(é)""‘h[(zm)lff-‘é(zm—1)12*-—1+1-2(2m—2)12=--=
B! 1 B..._l 11
4vm2~—4+ Bl (2m_—_2)'12_2]

and it is a demonstrable property of the Bernoulli numbers that the expression

¢ See MaLmsTEN (l. ¢.), p. 64, 4.
§ Due originally to PoissoN. See Mém. de I’ Acad. des Sciences, Vol. 6 (1823), p. 590.
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here appearing in square brackets is equal to

2" —1 B
(23) (= D" 27 Gmyi”
Whence, by adding and subtracting the term
-1 !ll+1B hh—
e [f=0() — fm(0)]

in the second member of (16) we obtain the following result:

“If f(z) be a (real) function of the real variable 2 which together with its
first 2m derivatives is continuous within the interval (a, b) and if its 2mth deriva-
tive does not change sign between the same limits, we may write

T1e) = [ f@i— 10 - jo1+ 2 1) - o1 - 2

, (_ l)nrﬂ B,,.h""—’
X [f'"(b) —- f/l (a)] + oo+ (2m)! [f(h—l)(b) — f(h—l)(a)] + R',

where

m o
I e Cree=t 1)3(2 L UeI0) - @l 0<0 <1

Since
24 0 922" PP ik PP
24) < =

we see that under the hypotheses of the above result the series (1), even though
it be divergent, may be used to compute the value of

b—A

(25) 2 1)

with an error numerically less than the absolute value of the last term taken.

More generally, it appears in the same manner that we shall have the above
result whenever f(z), f'(z), f’(x), - -+ f®(z) are continuous within the interval
(a, b), while the expression

b=A

21 (z + 3)

does not change sign between 2 = 0 and z = A.
7. Again, let us now suppose that neither of the expressions

d—A

(26) bifm @+32), 2 o+ 2)

z=a

changes sign between z = 0 and z = k. Replacing m by m + 1 in (16), using
¢ See MALMSTEN (I. ¢.), p. 70
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therein the form for Rn:1 determined by (19), and comparing the result with
that of § 5 (in which m is left unaltered), we obtain

22 — 1 Bk
g';:l_:‘_ 2)12 FO~) (2 4 0h) = — { =l 1 } (2’:n) ! [f@D(p) — fam—D(g)],
But

b—-A

femD(p) — faD@) = | 3 fem(z 4 z)da.

Whence, upon recalling that B, and Bm41 are both positive, we see that the
expression
2 — 1
O — 1

 will be negative and numerically less than 1 in case expressions (26) are of the
same sign between z = 0 and z = &, while it will be positive and no greater than

1 21— 1

e
in case expressions (26) are of opposite sign throughout the same domain. Thus
we reach the following result:

“Let f(z) be a (real) function of the real variable z which together with its

first 2m derivatives is continuous within the interval (a, b) and is such that
neither of the expressions

R T

changes sign between z = 0 and z = h. Then, according as these expressions
preserve the same or opposite signs for the indicated values of z, we may write

Tr@ =1 [ 10— 310 - s+ 2176 - ron

@) — BB ey — @+ -
+ (= m ZEE (D) — D (a)] + R,
where
= (~ pme S5 (i) — fe@); 0<0 <1

and Bk

S 1@ = [ 1@ — 150 - s+ 570 - @)
(28) — B gty — pria -

+ (= D= T () - £ (a)] + R,
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where
2m—1 __ 1 Bmhh_l

2
B = (= ™0 g~ "5 ST (S 00) — fo @), 0<0<1”

Formula (27) was first established by JacoBr” in 1834. Whenever the con-
ditions for its use are satisfied it is seen that the sum of any number of terms in
the series (1) (convergent or divergent) gives the value of (25) with an error having
the same sign as that of the first term neglected and less numerically than the
absolute value of that term. Formula (28) is due to MALMSTEN.?] Whenever
it may be used the sum of any number of terms in the series (1) gives the value of
(25) with an error having the same sign as that of the last term taken and less
numerically than the absolute value of that term. .

8. Another important and well-known form for the remainder in the Mac-
laurin Sum-Formula may be obtained when the function f(z) may be regarded
as an analytic function of a complex variable.

To see this we recall in the first place that if f(w) and ¢(w) are any two func-
tions of the complex variable w (w = « + 4y) both analytic and single-valued
in the neighborhood of the point v = a and of which the second has a zero
of the first order at the same point, then we have the formula

1) 4 g 1) gme=
(29) (p(W)d - o"q’l(a)"' e {ﬂ. =0 if 0 = 21(,

where the integration is taken in the positive sense along the arc of a circular
sector of small radius ¢ and center at w = a and whose angle is §. In fact, this
formula results directly from well-known principles in the theory of complex
integrals upon observing that in the present instance we may develop the func-
tion f(w) [¢(w) in the form

C—1
w—a

. _ f@
+ p(w)r €1 = 'Pl(a) ’

where p(w) is analytic at the point w = a.

An immediate and useful corollary of (29) is as follows:

“If f(w) and ¢(w) are any two functions of the complex variable w both of
which are single-valued and analytic in a region A4 of the w-plane and of which
the latter vanishes within 4 only at the points w = \j, \s, --- N\, which are
zeros of the first order, and if (', designate any contour lying within 4 and
including the points w = Ay, Ag, - - - N4, we shall have

1 [ fw@ 3 )
(30) 2,.-,-fc_¢(w) o= 2 o’

where the indicated integration is performed in the positive sense.”

7 See Journ. fur Math., Vol. 13 (1834), p. 270.
$ See MaLMsTEN (L. ¢.), p. 72.
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We proceed to apply formulas (29) and (30) to our present problem.? For

this purpose let us take!®
(31) o(w) = e2miMe—a) _ 1

and let us suppose f(w) to be any function which is analytic throughout & vertical
strip of the w-plane extending to an infinite distance both above and below the
axis of reals and including the two real points w = a, w = b (b > a). For the
contour C, let us take that formed by the line w = a 4 %y (the point w = a
excluded), by the line w = b + iy (w = b excluded) and by the lines w = 2 &= %
(7 = constant > 0) together with small semicircles of radius ¢ > k about the
points w = a, w = b, the former extending to the right and the latter to the
left.

Since ¢(w) has zeros of the first order at the points w = a + pk; p = 0,
1,2, .- -, while at the same points ¢’(w) = 2xi/h, we obtain as a result of (30)

b—A
J(w)
: - o+ [
(32) B2 1@ = @) + | oo du
We proceed to study in further detail the complex integral here appearing.
F B
1
2 c\,
J! - A
Fia. 1

First, the contribution coming from the side JA4 (see Fig. 1) is
[ — 1)
L= f 7 dz,
17U e@ — %)
and since ¢(z — %j) becomes infinite when j = + o like ¢?*//*, we have but to
suppose that f(w) satisfies the following supplementary condition:

(33) jlim f@—1t)e*™ih=0; a=z=b
=+ o

in order to have I; = 0 provided we take j = «. In particular, condition (33)
will be satisfied whenever [f(w)| remains less than a constant for all values
of w within the strip already mentioned.

? See PETERSEN’S “ Vorlesungen iber Funktionstheorie ”” (Copenhagen, 1898), pp. 161-169.

10 ]t is to be understood that the constants a, b, A have the meanings already introduced;
vis., b = a + nh; h > 0, n = positive integer.
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Secondly, let us consider the contribution coming from the portion DEFG.
By writing
1) _ fo) + 1}f(w) _
¢ (w) p(w)

and observing that the integral of f(w) over DEFG is equal to that over DCHG,
the contribution in question becomes

. [ {e(a+ iy) 4+ 1}f(a 4 ty) . (7 {e® + 1y) + 1}/ + 1)
v A e(a + 1y) dy + 1'.[ b+ 1) dy

_ (" le@+4) + 1}fz + 1)
a oz + %) dz + axc'pf(‘u,)dw.

f(w)

Of the integrals here appearing we observe that the third may be neglected by
taking j = 4 o provided that f(w) satisfy the following supplementary con-
dition:
(34) ,liin f@+ i)eih=0; a=z=0b

Next, the contributions from the semicircular arcs BCD and GHI are equal
respectively to — (k/2)f(b) and — (k/2)f(a) except for expressions that become
infinitesimal with ¢, as follows from (29). :

We shall now assume not only the existence of (33) and (34) but that of the
following stronger condition:

(35) Jim f@z £ et =0; a=z=b,
=400
where 7 is an assignable positive quantity. If we then take account of the two

remaining contributions, viz., those arising from the sides 4B and IJ, we obtain
in summary

Lo h . b+ 2 110+
i@ = [ fwydo - 150 — f@) +i [ LEHBENOE D,
. [ {ela+ 1y) + 1}f(a + iy) . b+ )
+ 'f. o(@ + i) Wti) oty ®
. f(a + 1)

+4 - o(a+1y) a9,

in which the various improper integrals have a meaning by virtue of (35).
Let us next allow ¢ to approach zero. Since

o(a+ 1) = b+ 1) = ¥V — 1,

we thus arrive at the equation
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b—A

b i@ = [ @ = 150 - fo)
1 (*Ufe+iy) — fz = @l dy

' o e!yw h 1

(36)
+

Moreover, the function (1/2) [f(x + 1y) — f(z — ty)]i=>, being real when y
is real, may be expanded by Taylor’s formula (with remainder) into the form

m—1 x=b
2| fir @y - @0 + o+ e |

+ (211n)) nf'[f"’"’(* + ify) — fo(z — W)= 0< < 1.

Recalling finally that!

p—1 0 p—1 th
fﬁy:h—dy h”f 2?: ldy—EBP; p=112:3:"'1

we reach the following result:

“ If the function f(w) is ana.lytxc throughout a vertical strip of the w complex
plane extending to an infinite distance both above and below the axis of reals
and including the real points w = a, w = b, and is furthermore such that

lim f(z & ty)e™ "My =0; a=z =},
y=t+w

where 7 is some assignable positive quantity, we may write

@ =1 [ 1@z~ 3150) - 1 + S 7@ - @)
e AT ORY O EaS
+ E s LR D) = fed(@)] + R,
where

_ (- D™ ] f(zu)(x + 10y) — fem(z —i0y)];’::
Rll - (2m)l 'ih 0 e2yrlh — 1 yﬂmdy

0=1 when m=0,
0<0<1 when m=1,2,3,---

Equation (36) with & = 1, was first given!? by PLaNA in 1820 and soon after-
wards by ABEL.!®* The same result was obtained through the calculus of residues
for the first time by KRONECKER!* in 1889.

11 See MALMSTEN (I. ¢.), p. 59.

12 See Mem. della Accad. delle sci. di Torino, Vol. 25 (1820).

13 See Oeuvres completes (1881), Vol. 1, pp. 21-25. Ibid., pp. 34-39.
1 See Journ. fur Math., Vol. 105 (1889), p. 354.
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9. We proceed to note certain theorems which follow from the preceding
results and which will prove useful in the study of divergent series (Chap. II).

THEOREM I. Let f(x) be any (real) function of the real variable x which together
with s first 2m derivatives 13 continuous throughout the infinite interval x > a.
Also, let it be supposed that the following series is convergent:!®

(31) 2 [ 1+ temti
in which pan(t) represents the 2mth Bernoulli function. We may then write
-1 B
T 1@ = Cat [ e = 1) + 5 1@ — 33 1@ + -
— 1)"B,,—
+ G 1O + 2u(@)
where
) 1 — m—1 )
0@ = 3 [ 100 + Deumiit == 5 oy 4 0,
(38) y==vo = c=a
0<6,<1,
and where Cn 13 a constant as regards x, defined by the equation
B —_ m—1 o
Cn = 4@ = 5@ + 1@ = - + Gt om0 (a) — 0u(a),

In fact, the expression Qa(z) will exist forz =a,a+ 1,4+ 2, ---, and by
the results of § 4 we shall have

T = [ f@ie = 311 ~ @1+ 517G — @] = -+

— 1)™Bm_
+ Gt fomD(a) = fowD(@)] + R,

where
1 z-1

Bn= - | gﬂw(y + ) @an(t)dt = Du(z) — Du(a).

But this result is coextensive with that indicated in the theorem. As to the
second form there given for Q.(z), we observe that by virtue of statement (a)
of § 3 we may apply the first law of the mean for integrals to each term of the
series representing Q,(z), thus writing

0n@) = S1+6) [ emd;  0<0,<1,

y=z

1 It will be understood that in this and the following two theorems y takes only the values
a,a+1,a+4+2---.
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which, upon using (18), becomes

(39) ) = 5P 5 Tie+ o).

We add that in case li_mf""“)(z) =0;p=1,2,3, ---, the constant C,,
will be independent of m as well as of z, for we shall then have

(

Cut Bu(e) = Cut 5H11@) — 11" (@) o+ + G et fomD() + 0t

so that by placing 2 = « and observing that lim Q,(z) = lim Qu(z) = 0, we
obtain C; = Cn.

THEOREM II. Let f(z) be any (real) function of the real variable x which
together with s first 2m derivatives is continuous throughout the infinite interval
x> a. Also, let it be supposed that f® (x) does not change sign within the same
interval and that lim f @m=D(x) = 0. We may then write

1@ = Cat [ f@dz = 1@ + 5150 — ,’f'"(z)+

- )™

+ (2m)l

B fom ) + 2u(a),
where
0n(@) = ST + 5 f 1oy + Dm0

S en@feo@); {75
(2 )l " ’ —1=6.@s1,
and where Cy, 12 6 constant as regards z, defined by the equation

B B 1)"B.,
Cn = 31@) = (@) + FH"(@ = -+ + TGP oD(@) = 0o
To prove this theorem we first observe that, as a result of our hypotheses
upon f®(z), the terms of the expression

Fa(, z) = bi lf‘""’(zl + Dem®)dt; b>z

y=2
will all have the same sign, so that F,(b, z) is either an ever increasing or an
ever decreasing function when b increases; also by treating Fp,(b, ) as we did
the Rn, of (17) by means of (21), (22) and (23) we obtain
Falh, 2) = S B2 1, ) oy (pem0) — fom0(a));
m\Y, (2m) 1 92m—1 ﬂm ’
0< m(b,z) <118

1¢ The expression © appearing in § 5 is in general a function of m, a, b and k. Since, in the
present instance we have A = 1, a = z we represent 6 by (b, ).
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Whence, the expression
Fu(z) = ll_m Fu(b, x)

exists, and since by hypothesis
l}im fe=D() = 0,
we shall have

Fu(@) = Onl2) — ) Bm

(2m)!

- 1)mH1 2n
( (;?m) an 2 9om—1 1 ﬂm(x)f (@1 (=);

0=1mm(z) =1

fem—D(z) =

or
— 1)mH 2m
@ o =S S - 1] e 0@ =1

Thus, Q.(z) exists and has the form indicated in the theorem.
Now, by equation (16) we shall have also
z—1
> 1@ = [ @) — 3@ - f@1 + 3@ — f@) = -
+ E DB fome(q) — w0 (@)] + u(e) — Ba(a)
2m)! '

Thus, we reach the desired result. Again we note that C,, will be independent
of m as well as of 2 whenever

lim ferD(z) = 0; p=1,23,---.

TaEOREM III. Let f(x) be any (real) function of the real variable = which
together with its first 2m <+ 2 derivatives 18 continuous throughout the infinite interval
z > a. Also, let it be supposed that f* (x) and @2 (z) do not change sign within
the same interval, while

lim f@7D(z) = 0; p=1,23, ---.

Then, if f®(z) and f*>+2)(x) preserve the same sign (z > a) we may write

z-1

> 1@ = C+ [ 1@z = 1@ + @ — o @ + -

+ G e 0@ + 0@,

where
@ =3 [ PO+ Do = (— 1™H0(e) ooy F0(@);

{ z=a
0=06,) =1,
and where C is a constant as regards both m and z, defined by the equation
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€ = 4f(@) = gH(@) + 2@ = -+ + Gy {9 @) = Q)

On the other hand, if f® () and f*D(z) preserve opposite signs (x > a) (other
conditions remaining as before) we may write

};f(x) =C+ I‘f(z)dx —3f(x) + g}f’(:r) - %’_fur(z) 4 een
(:é),:;%'f‘”"” @) + 2n(a),
where

1u(e) = oS P 0) + 3 f O+ Dt

—1 B, =
= (— 1)~ lem(z) 22-.—1 2m)! e @); {3 = gn(-'f) =1,

and where C 12 a constant as regards both m and z, defined by the equation

C = if(a) e ! l( )+4!flll( a) — ( (2];,),,)]B f(bn—l)(a) (a).

For the proof of this theorem we first observe that the conditions for theorem
II, and hence also those for theorem I, are here fulfilled both for m = m and
m = m+ 1; also the conditions that C, shall be independent of m. Upon
applying theorem II with Qu(z) as given by (40) and comparing the result
with that obtained by placing m = m + 1 in theorem I, we obtain
-
(41) (2B—”’:)! { Nm(T) 2—22,,,—_,—1 -1 } fe=n(g) = @ ﬂ?m-ltl2)l Do femD(y 4 6,).

y=z
Let us now write f®*V(z) in the form

18-1

—lim | 20 f®(y+ t)dt

d=w JO y=zx

and let Q.'(z) represent the expression Qu(z) of theorem II in the present dis-
cussion. Then, in case f®(z) and f®*?(z) preserve the same sign it follows
from (41) that

(= D~

! ( ) —_1 < <
(42) Qm (x) (2m)l 'Pm( )f a1 (Z'), 1 = ¢ﬂ(x) = 0
and hence, for the first expression Qu(z) of the present theorem, we shall have

1 1
0n@) = 0(@) + i P gy = (= B

0= Om(x) =1
with which the first part of the theorem becomes established.
17 Cf. MARKOFF (l. ¢.), pp. 131-133.
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If, on the other hand, f®(z) and f®+2(x) preserve opposite signs (z > a)
we shall have equation (42) in which

22m _ 1 P |
0§\0,.(I)§2T——1=W—

and thus the second part of the theorem becomes established, upon observing
finally that we here have Qn(z) = Q./(z).

TeEOREM IV. Let f(w) be any function of the complex variable w = z + iy
which ts analytic throughout all portions of the w plane (w = o excl.) for which
z = a. Also, let it be supposed that

lim f(z &£ iy)er?™v=0; =z=a,
y=+wo

where 7 18 some assignable positive quantity. We may then write

T 1@ = Cut [ @)z = 3@+ Bp@) — @) + oo
— 1)+
+ E @) + Ona),
where

_(=Dnn fo @ (2 4 8,4y) — f&(z — 6.iy) .
(@) = Emyiz ), & — 1 ydy;
{0, =1 when m= 0
0<0:<1whenm=1,2,3, -,

and where C, 18 a constant as regards z, defined by the equation

Cn = 4@ = 511 (@) + 517 (@) = -+ + T o Pm o d(@) — 0u(a.

This theorem is, in fact, a direct consequence of the result stated in § 8,
being obtained from it by placing b = « and rearranging terms.

GENERALIZATION OF THE PRECEDING RESuULTs!®

10. The results given in § 4-7 and the first three theorems of § 9 require
that the function f(x) together with its first 2m derivatives shall be continuous
throughout a certain specified interval. When this condition is not satis-
fied the same results and theorems no longer exist, at least in general. How-
ever, in cases in which f(x) satisfies the indicated condition except at a finite

18 For a derivation of the Maclaurin sum-formula from the standpoint of Fourier series, see
Porsson (1. ¢.). A still different method may be found in BooLE’s * Treatise on Finite Differ-
ences”’ (London, 1860), pp. 80-84. The formula has been generalized in various directions by
BARNES; see Quart. Journ. of Math., Vol. 35 (1903), pp. 175-188; T'rans. of Cambridge Philosophical

Soc., Vol. 19 (1904), p. 325; Proceedings of London Math. Soc. (2), Vol. 3 (1905), pp. 253-272.
3
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number of points (at which discontinuity or uncertainty may exist) we may
still obtain certain noteworthy results.

In order to show this we first observe that if u and » be any two functions
of the (real) variable x which together with their first derivatives are continuous
throughout the interval (o, @ + k) except at the point = 8, we may write

o ([ [ e ([

¢ being an arbitrarily small positive quantity. This is, in fact, a direct conse-
quence of the ordinary formula for integration by parts.!®

In particular, if u, be a function which together with its first 2m + 1 deriva-
tives (w/, u"’, ++- u®tD) ig continuous within the interval (a, a + 5) except at
the point # = 8 we may obtain by repeated use of (43) the following result
(ef. 3)):

m—k1p h—-k s=8—a+¢
Au® = 4@, — 4 = > h_ugeﬂ) [ Z (ﬂ-”)]
a 'a+t.
p=1 P! p=0 s=f—a—¢

+(f., +)i’;;—”;§, R

Whence, if Ho, H,, -+ Ham be the constants defined by (5) we may write
(cf. (6)):

2m—1 m—1 s=8—a+¢
=T msd+| T S o | en,
where
h — (fa—‘_. ) (h-}-l) ﬂz—lH hk (h - z)h-kdz
e N A T T

Upon introducing the function @m(z) and making use of the relations (10)
and (13) we thus obtain

m—1 B khzk

hu, = Au, — -gAu; + E, (= 1) @1 Au®
(44) o _
[3:211 #E TP | e,
k=0 p=0 e=—c
where

== ( [+ N ) st nate — adde.

The case of especial interest for our present purpose is that in which u, is
taken in the following manner
19 As usually stated (cf. Goursar, “ Cours d’Analyse,” Vol. 1 (1902), § 85) the formula

requires that » and v with their first derivatives shall be continuous throughout the interval of
integration.
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u,=ff(a:)dx when a=x=f—c¢

u,=(f_'+ ’:.)f(a:)dz when Besz=ath

f(x) being any function which together with its first 2m derivatives is continuous

within the interval (a, a 4+ k) except at the point 2 = 8. Such a function u.

together with its first 2m 4 1 derivatives will be continuous except at z = 8.
Whence, applying (44), we may write?

B —e +A
i@ = ([ ) e = 1@ etz — ollde — Ff(e)
(45) + -il( 1)&—1 ?Eh__ Af @D ()’

[hi’H h* E (h+—a__f(k+r-1)(ﬂ + 1.)

Let us suppose lastly that the interval (a, « + k) containing the point x = 8
is part of a larger interval (a, b) throughout which (except at z = 8) f(z) satise
fies the indicated conditions; also let us suppose that « is one of the quantities
a,a+ h,a+ 2h, ---, b — h. If then we apply formula (16) to f(z) when con-
sidered within the intervals (a, ), (e + &, b) and apply formula (45) to the
same function when considered within the interval (o, « + %) we obtain, after
adding the three results and dividing by &,

n—-1

Stat o =Ss@=3( [T+ [ e
B—e +h

Rl T
(46) + [Tg: th" ’:g—: (h+a— f(Hp—l)(ﬁ + x) :;i.
— }I5®) — f@) + 32," 8 = f@] = -

4+ LBt fom0(0) — f0m0a)] + R,

where

b—A
rem L ()t i
By use of this formula instead of the earlier corresponding one (16) we arrive
0 We note that /(8 + z) = up,s and hence V(8 + z) |’=*, = 0.

r=—e
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at the desired theorems corresponding to the first three of § 9. Since these are
long in statement though readily supplied we shall omit them.

Analogous results may evidently be obtained when f(z) presents any (finite)
number of exceptional points of the type just mentioned.

11. Again, the results stated in § 8 and the fourth theorem of § 9 require
that f(w) be analytic within a certain domain. If, on the other hand, this
function presents singularities at a finite number of points within the domain,
but otherwise satisfies the indicated conditions, we may readily make such
alterations as are necessary to preserve correctness. For example, let us sup-
pose that the function f(w) of theorem IV satisfies the conditions there stated
except at the point w=8=p+1q; a<p<=z ¢<0. The theorem will
then continue to hold true? provided that we subtract from the second member
the residue r4 of the function
2if(n) _ _ 2wif(w)

(47) ‘P(w)— LA Ca I

corresponding to the point w = 8. However, if the exceptional point occurs at
w=p=p+1; a<p<az ¢>0, then (in view of the manner in which in
§ 8 the integral of f(w) over the path DEFG was transformed to one over the
path DCHG) the theorem will continue true provided we subtract from the
second member the expression rg together with the residue rs’ of the function
27if(w) corresponding to the same point w0 = 8.

Other cases are those in which a singular point occurs on either of the lines
w=a+ 1y, w=x+ 1y or at a real point w = B < z. If, in the last of these
cases (which is the only one to which we shall refer later), the singular point is
a pole of the first order the theorem is seen to continue as a result of (29) provided

that the term
[ serie

lim (f S )f(r)dx R

«=0 B+e

be changed to

where rg, rg’ have the meanings already given.

SERIES OF STIRLING °

12. As a preliminary application of the preceding general theorems to special
functions f(z) let us take f(z) = log x, a = any real number > 0. We are
thereby led to certain well-known results respecting the series of Stirling.

The first part of theorem 11T may here be applied since we have

=D (p—1)!
xP

f(p)(x) = ( ; p=123,-...

nCf. §4.
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Whence, upon observing that
flog:tdx=[:tlogx-—:t],‘_=k1+rlogz—x; k1 = const.
and that
:g: log = log I'(x) — log I'(a) = ky + log I'(z); ks = const.
we obtain
1 By 1 1

B B 1_
logI‘(x)=K+(¢—‘})1083—“’+1%3;—ﬁ§+5—-8_65_

(=1)mBma 1
t @m = 3)em — 2) 23 T (@)
where K is a constant as regards m and z and where

— m+1
(48)  rm(x) = Om(2) (2(—”;{_—)1—) (12—3;—) x_*_}'—_‘; 0 =6n@) =12

Moreover, by comparing the above results with the well-known formula2®

logT(zx) =%log2r+ (x— %) logz — 2

(49) =( 1 1 1\ _, dt
+f (1—_5—2‘5)8 T
it follows (upon placing ¢ = «) that K = } log 2.

Thus, we arrive at the series of Stirling (see Preface) and it appears from
(48) that, though divergent, the series may be used to compute log I'(z) with but
slight error when x (real and positive) is large. In fact, the first term neglected
is seen to constitute an upper limit to the error committed by breaking off the
series at any one point. This fact was pointed out by Caucuy?! in 1843 through
an independent investigation based upon formula (49), he also noting in this
connection the possible value of divergent series in computation. CAUCHY’S
work was, however, confined to this one series and in this it appears that his
results might have been obtained much more directly, as indicated in § 12,
from the earlier general investigations of Porsson and Jacosr relative to the
Maclaurin Sum-Formula.

We add that the value of the constant K may be obtained independently of
formula (49) by use of the well-known formula of WALLIS expressing the value
of /2.3

2 In the present case it may be shown that 0 < O,(z) < 1. See MarLMsTEN (l. ¢.), p. 75.

8 Usually attributed to BINET.

¥ See Comptes Rendus de ' Acad. des Sciences, Vol. 17 (1843), pp. 370-376.
% See Marxorr (l. c.), p. 134.
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PRELIMINARY DISCUSSION OF ASYMPTOTIC SERIES
13. The formula of Stirling, by means of which the function

logT'(@) — (x— %) logz+ =

may be identified with a certain divergent power series in 1/z, affords an illustra-
tion of an important class of developments known as asymptotic series. We
‘proceed to give at this point a brief exposition of the general features of this
subject, leaving its further development and applications for later chapters,
especially chapters II and III.

Following PoiNcARE, we adopt the following definition:2

“ A power series of the form

1 1)\2
(50) ao+al(5)+a2(5)+‘.'; a’o,algaz,"’comtam

is said to represent asymptotically the function f(x) for large positive values of z
whenever

'l=ir:1- z*[f(x) — (a0 + a1/z + az/22 + - -+ + aa/z™)] = 0;

51
D) n=01,23, "

Thus, for a given value of n the difference between the function and the sum
of the first n 4 1 terms of its corresponding asymptotic series (in case one exists)
vanishes to a higher order than the nth when 2 = + o, as would be the case in
particular if the series were convergent. Symbolically, the above relation is
expressed as follows:

(52) f@) ~ag+ arfz + azf2+ ---.

Several general observations are here desirable. First, a given function f(z)
can be represented asymptotically in but one way. In fact, we have from (51)

1 4 Gnt () .
(63) f@@) = @+ arfz+ @[zt + -+ apafz T+ T2 lim (@) =0
=40
 See Acta Math., Vol. 8 (1886), p. 296.
%7 In this definition no restrictions are placed upon (50) as regards convergence or divergence.
However, in the usual applications the series is divergent for all values (positive) of z, but as an

instance in which the contrary is the case we have
0,0,0
-1 22424
€ "~0+z+ ,+x,+ .

In the most important applications (cf. Chapters II and III) f(z) is a function (either given
explicitly or else determined implicitly as a solution of a linear differential or difference equation)
capable of analytic continuation into the complex field, being in fact analytic throughout the
finite plane with the exception of points (finite or infinite in number) situated upon a finite number
of straight lines radiating from the origin and having the point z = « as a non-polar singularity.

For further criticisms upon the definition of asymptotic series see THOME, Journ. fur Math.,
Vol. 24 (1904), pp. 152-156; VAN VLECK, The Boston Colloquium Lectures (New York, Mac-
millan, 1905), pp. 77-85; WaTsoN, Philosophical Trans., Vol. 211A (1911), pp. 279-313.
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and in case we had also

f@) = bo+ bifz + baf2? + -+ + bpafz"' b_,.i—x_:,._(_:r)’ lim e)/(z) = 0

=+
we should have
1

(a0 — bo) + (a1 — bl):%:+ (az — bz)é'l‘ coo 4 (@p1 — bn-l);nTl

(54) ,
an — bn + en(;':) — €n (x)

xﬂ

+ 0.

Whence, ag = by, as results from the last equation by placingz = 4+ . Making
use of this relation in (54), multiplying both members by « and proceeding as
before, we obtain a; = b;, ---, ete. The converse of the above statement is,
however, not true as appears directly when we note that if f(z) is represented
asymptotically by (50) so also is, for example, the function f(z) + =2

Again, it is desirable for the sake of clearness to note that asymptotic series
in general cannot be used for purposes of computation in the sense in which
Stirling’s series can be used to compute log I'(z). In fact, no information is
at hand respecting the error committed by stopping at any preassigned term.?®
There are, however, numerous and important asymptotic developments®® which,
like the series of Stirling, are derivable by use of the Maclaurin Sum-Formula
and for such the limit of error may usually be fixed by means of the formulas
then present for the remainder. But in all cases, the asymptotic development
furnishes information as to the behavior of the function when z is very large.
Thus, the expressions

ao, @0+ a1/x, 6o+ a/z + 02/, -+, a0+ @[z + a2t + - -0 4 am[am

constitute a series of successive approximations to the value of f(x) provided
that z is sufficiently large. Furthermore, we have

!_im () = ao
(55) ZLIE‘ z{f(x) — ag] = a1

lim =™ f(z) — ao — a1/z — a,:/zz — e — Gpa/z™Y] = gy

2=+

Conversely, when the behavior of f(z) for large positive values of z is known,
the equations (55) serve to determine the coefficients ao, a1, as, - - - of the corre-
sponding asymptotic development if one exists.

8 By adopting a more limited definition of asymptotic series than that of PoiNcARE, WaTsoN
has obtained a noteworthy theorem upon this question of uniqueness. See Philosophical Trans.,
Vol. 211A (1911), p. 300.

 For noteworthy exceptional cases, see STIELTIES, Annales de 'Ecole N ormale, Vol. 13 (1886),

PP. 201-262,
30 This is true in general of the developments considered in Chapter II.
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14. The following consequences of the definition (51) are especially note-

worthy :
“If

f@) ~ao+ arfz + arf* + - -,

go(:c) ~ bo + b;/x + bg/x’ + e
then ,

b b

@ f@) £ (@) ~ (a0t bo) + B2 B2
) f@) - (@) ~ o+ arfr+ crft+ -+,
where cn = by + a1bp1 + a2bas + -+ - + cabo;
() J@) /o) ~ do+ difx + dafa? + - -+,
provided that by #+ 0, the coefficients do, dy, ds, - - - being determined by the equations

ao = body
a = bido + body
dn= bado + ba—1dy + -+ + boda;

@ [ e~ 2t 2t gt

provided that ag = a; = 0.”

In other words, asymptotic series are subject to the same laws of addition,
subtraction, multlpllcatlon, division and term by term integration as convergent
power series in 1/x.

For the proof of (a) we have but to note that

an + en(x)

J@) = ao+ asfx+ asfz + - + Guafr I ———; lix:l () = 0,
@) =bo+ bifx + by/2 + -+ + bpafz + ——— L + e,. bn + &'(2) ; HT &’'(x) = 0.
Thus, we may write
J@) & 9@ = @k b)) + -+ + (@a ok bys) oy + DEDIT D,
lim g.(z) = 0.
z=+@

As regards (b), let us indicate by Sa(x), Ta(z) and Z,(z) respectively the
sums of the first n 4+ 1 terms of the three series in question. Placing for brevity
J@) =1, o@@) =9, aa(@) = ¢ &'(x) =€, Sa(@) =8, Ta(®) =T, Za(z) =2
lim = lim, we shall have

2=+

81 See PoiNcarE (I. c.), pp. 297-301.
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(56) f=S+;€,,, ¢=T+a%'; lim e = lim ¢ =0
and
P
S T= E'!'ﬁ:

where P is a polynomial in z of degree no higher than the (n — 1)st.

Whence,
(-2)(o-5)2+2

2lf - — 2] = f¢ + pe+ (P — e)

'

or

Now, lim f = ao; lim ¢ = by from which it follows that
lim z*[f - ¢ — Z] = 0.

For the proof of (c) let us use the same notation as above except that = shall
represent the sum of the first n + 1 terms of the series in which the coeflicients
do, dy, ds, - - - appear. Then, using equations (56) we shall have

S
€ T€

S
TT% 1Ty
b

@
and since lim S = ao, lim T = by ¥ 0 it follows that lim z"p = 0.
Moreover,
S

Whencs,
lim z'(%— E) = lim 2"(n + w) = 0.

The proof of (d) is readily supplied. We have from (53) when ap = a, = 0
” _a, a4y n1 an + m(z)
j: J@de =Tttt ot a T e T e e

ﬂn(x) = g1 [ ® ﬁ'(‘i) dx

zﬂ

and, since lim e,(z) = 0, we may say that corresponding to an arbitrarily small
positive quantity & there exists a constant z, such that |e(z)|< §; z > z,.
Whence,

* dz 6
|7a(2) | = 218 j: oAl T
so that lim 5,(z) = 0.
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In distinction, however, to the properties of convergent power series, the
term by term derivative of the asymptotic development of f(z) will not neces-
sarily be the asymptotic development of f’(x). This is most easily shown by an
example. Thus,

(57 fx) = e *sin (e’)~0+g+%+ cem

but since f'(x) = — ¢~* sin (¢*) + cos (¢®), the expression lim f'(z) is oscillatory

so that not only does the term by term derivative of the series (57) fail to repre-

sent f'(x) asymptotically, but f'(z) permits of no such representation whatever.
However, if

a) 17}
J@) ~aot+ 2+ 5+ -

and if f'(z) is known to be developable asymptotically, then

(58) fa@~=R-T

In fact, if f’(x) were developable asymptotically in any other way than (58)
it would follow from (d) of the above results that f(z) was developabl: asymp-
totically in two different ways.

15. In addition to the properties (a), (b), (c) and (d) of § 14 we note also the
following general result:

“Let

f(@) = ao+ w(z); w(x)~%+%+...

and let F( f) be a function of x through f which, when written in the form F(ao + w),
18 developable as follows:

Faa+ ) = Fan) + F'lanyo + oy 1 ...
(59)
F»—D Fm n $

(as happens in particular when F(ao + w) ts analytic at w = 0). Then we may
write

Pry P2y P,
F(f)NF(aO)+x+xz+ +1“+ ’
where p1, D2, -+, D are the coefficients of the successive powers of 1/x obtained by

G,.(‘w)
nl

substituting into (59) (ezclusive of the term w") the first n terms of the given

asymptotic development of w(x).”
2 Cf. BRomwicH, * Infinite Series "’ (London, 1908), p. 334.



ASYMPTOTIC SERIES 27

In fact, from (b) of § 14 we may write

' (n)
Floo + Flagw+ w4 o 4 0 pag 4 By By

and hence (59) may be written in the form

Pn + 1m(2)

xﬂ

+ e,;ﬁzlp) w*; lim g.(z) = 0,

F(ao+ w) = F(ao)+%l+%+ RNE
If we now write e,(w)w".in the form

1
pors e,.(?v)w"a:"

and observe that
lim e(w)w"z® = 0

we obtain the desired result.

16. We note in connection with the definition (51) that we have supposed
real and positive. More generally, f(z) is said to be represented asymptotically
by the series (50) throughout an infinite region T (usually a sector with center
at z = 0) of the complex plane when, for all corresponding = values, the equation
(51) exists in which lim is substituted for lim. In the case frequently pre-

lz| =0 r=+4+0
sented of a single-valued function f(z) having an essential singularity at the
point z = o, we note that the above mentioned region cannot completely sur-
round the point x = o, since we should then have' lim f(zx) = aofor all methods

x| =0
of increase of |z|, thus contradicting the hypothesis that the point z = o« is
essentially singular.

Again, if f(xr) and the region T be given, we observe that the necessary and
sufficient condition that f(x) be developable asymptotically throughout T is
that there exist a set of constants ao, a1, as, - -+, an, - - - satisfying relations (55),
it being understood that the values of  appearing in these relations are confined
to T. In fact, if (55) exist we have (51) and conversely. The same relations
(55), when employed as a sufficient test for the existence of an asymptotic de-
velopment for f(z) throughout T, are usually difficult to apply and hence of
little value in practice, since f(z) is not in general so given that it is possible
to determine whether the indicated limits (representing ao, a1, as, ---) exist.
A sufficient test which has a wider field of applicability is supplied by the fol-
lowing

TraEOREM V.B  Let f(2) be a function of the complex variable x analytic within
and upon the boundary of a certain infinite region T of the x plane, the point & = o,
however, being excluded. Also, let o(x) = f(1/z) and let T’ be the region (having

8 Cf. Forp, Bulletin Soc. Math. de France, Vol. 39 (1911), p. 348. Line 13 should here read
‘“le point z = « toutefois étant exclu.”
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the point x = 0 upon its boundary) obtained from T by means of the transformation
x = 1/z'. If, then, for values of x in T’ the following limits extst:

lim o(x), lim¢'(z), lim¢"(x), .-, limp™(2),

z=0 z=0 =0 =0
and are represented respectively by ¢(0), ¢'(0), - -, ¢™(0), --- (these values being
assumed independent of the direction of approach of x to 0 in T') we may write for
values of x in T

f@) ~ a0+ ar(1/x) + as(1/x)? + + -+ + a, (/)" + ---

®(0
ak=¢kl();

In order to prove this Theorem we shall begin by establishing the following
Lemma in the general theory of functions:

Lemma I. *““ Let ¢(x) be a function of the complex variable x analytic within
and upon the boundary of a certain region T’ of the z-plane, exception being
made, however, of the point z = 0 situated upon the boundary at which point
¢(z) may have any character. If, then, for values of z within T” the following
n + 2 limits exist:

lin: o(x), lin: o' (2), liu: ¢ (%), e, lim oD (z)
= z= a= z=0

where

E=0,1,2,3,---,m, .

and are represented respectively by ¢(0), ¢’(0), ¢’’(0), - - -, ¢™tP(0) (these values
being assumed independent of the direction of approach of z to 0 in 7”) we may
write for values of z in T”

e@) = ao+ arz + a2’ + -+ + @py2™ + [an + ra(2)]2"; l,ii’% ra(z) = 0,
ao, ay, 4z, - *+, Gy being constants determined by the equation
= ¢(k)(0)
k!
In fact, under the above hypotheses we may write for any value of z in 1"

0@ = o)+ ¢ DE = )+ T2 @ — e+ LD (g e

1 14
+3if @ orema,

where ¢ represents a fixed value of z taken within T’ and arbitrarily near to 0 °
and where (at least if z and ¢ are each taken sufficiently near to 0) the inte-
gration is understood to take place along the straight line joining the point z = ¢
to the point z = 0. The existence of (60) may be readily verified by performing
an integration by parts n times upon the last term in the second member.?*

# Cf. Goursar, ““ Cours d’Analyse,” Vol. 1 (1902), § 86.

(k=0,1,2, -, n)."

(60)
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If in (60) we now allow ¢ to approach the limit zero through values that lie
within 7" (z fixed), and if we introduce at the same time our hypotheses con-
cerning the existence and meaning of ¢(0), ¢’(0), ¢"'(0), -+ -, ¢™(0), we obtain

" (n—l)
o@) = ¢(0) + ¢/ Oz + Tyt o o S
(61) e™(0) + ra(a)
n! it
where
62) @ = [ (’;‘) o0,

In order to complete the proof of the Lemma it thus remains but to show
that with r,(z) defined as in (62) we shall have lim r,(z) = 0 provided always
z=0

that z remain in 7.
Now, for all values of ¢ on the line of integration in (60) we have

Moreover, it follows from our hypotheses that we may find a positive constant M
(independent of x) such that for all values of z in T’ we may write |p™*(z) | < M.
Whence, if we place |z| = p we shall have for the given value of =

p
Ira@ | < 3 [ do = M

from which the desired result becomes evident.

Theorem I follows as an immediate consequence of the Lemma upon sub-
jecting the function f(z) and the region T mentioned in the theorem to the trans-
formation z = 1/2'.

We note also that if, instead of having f(x) defined throughout a complex
region T, it is given as a function of a real variable « within the infinite interval
(a, + «), we may obtain in like manner the following Lemma and corresponding
Theorem:

Lemma II. ‘““Let ¢(z) be a function of the real variable « which, together
with its first n + 1 derivatives, is contipuous within the interval (0, b), the end
point z = 0 being excluded. If, then, the limits ¢(+4 0), ¢'(4+ 0), ¢”’(+ 0),
«o e, @D (4 0) exist, we may write for values of z in (0, b)

o(@) = ao+ a1z + a2’ + -+ + a1 + [an + ra(@)]2; 1i=13r10 ra(z) = 0,

Go, G1, G, ***, Gy being constants determined by the equation

_e®(+0)

ax l (k=0,1,2, -, m).”
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TueEOREM VI. Let f(x) be a function of the real variable x which, together
with its derivatives of all orders is continuous throughout the infinite interval (a, + ).
If upon placing ¢(x) = f(1/x) the following limits exist:

e(+0), ¢H0, ¢'H+0), - ™0, .-

we may write for values of z in (a, + =)

f() ~ao+a1(i)+ a,(})z.[. +an(1)'+ ‘os,

z z
where

¢®(+0)
ax = kl )
17. We observe finally that the use of the symbol ~ is frequently broadened

as follows: “ If f, ¢ and ¢ are three functions of z such that in the sense of § 13
we have

k=0,1,2,8 ---,m, .

L%f~w+§+g+~u
the same relation may be written in the form
)
(63) frotap+ 2y

Thus we write when « is real and positive (cf. § 12)

1
log I'(z) ~ (z — 3) logz+x+%log2w+%;—%$+

Relation (52) may furthermore be written in the simple form f ~ ao, this
being especially true in applications of the theory (such as the determination
of lim f(z)) wherein the values of the coefficients a,, as, a;, -+ play no part.

=+

Likewise, relations of the form (63) may be written f ~ ¢ + aoy.



CHAPTER II

THE DETERMINATION OF THE ASYMPTOTIC DEVELOPMENTS OF A GIVEN
FUNCTION

18. Let F(z) be a given function of the complex variable z defined throughout
the finite z-plane and such that (a) the point z = « is a non-polar singular point
and (b) when |z| is sufficiently large and arg z lies within a given sector A (center
at z = 0) there exist two functions f,(z) and ¢,(z) each defined throughout A
and a set of constants ao, », a1, », G2, a, * * * Ga, », * - - Such that for values of zin A
we have
F(2) = fu(2) + ¢:(2) [ao,A+ %‘+ ‘%‘+ et a—%?‘;(z)],

lim w,,A(z) = 0.
|s| =00
Then, according to the definition of § 13 and the remarks of § 17, we may write
for the indicated values of z
F@) ~ 1@+ 0@ [ ana+ 224 224 .

This form of asymptotic development is of frequent occurrence and of prime
importance in analysis. The problem of determining for a given F(z) and A
the corresponding f,(z), ¢a(z) and ay, ,, a1,,, G2, 5, - -+ (assuming that they exist)
is usually one of considerable difficulty and, when regarded in a general sense,
is one for which but fragmentary results exist at the present time. The known
determinations appear to be either those for special functions of importance in
Mathematical Physics, such as Bessel’s function J,(2),! or for certain types of
integral functions, notably those defined by infinite products.?

In the present Chapter it is proposed to show how the general theorems of
Chapter I may be used, at least in certain cases, to make the above indicated
determinations. In doing this we shall merely consider certain special functions
F(z). No attempt will be made to obtain theorems of great generality, partly
because of the difficulty of such an undertaking, but chiefly because of the belief
that a few well-chosen illustrations suffice to adequately impart the spirit and
possibilities of the method employed. In each of the functions F(z) considered,

18ee for example LoMMEL, “Studien tiber die Bessel’schen Functionen ”’ (1868), § 17.

8 8ee for example BARNES, Philosophical Transactions, Vol. 199A (1902), pp. 411-500;
tbid., Vol. 206A (1906), pp. 249-297. Each of these memoirs contains an extended bibliography

of the subject. See also MaTTSON, *“Contributions & la Théorie des Fonctions entiéres ”’ (Thése),

Upeala, 1905.
31
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only the functions f,(2), ¢.(z) and the first one of the constants a,,, which is
not equal to zero are determined, since these three determinations constitute
what is essential to the study of the behavior of F(z) for large values of |z].
The method, however, permits equally of the determination of any one of the
coefficients a,, .

The functions F(z) considered fall into two classes: (a) those defined by
infinite products and (b) those defined by infinite series. Under (a) we have
eventually considered (§§ 24-28) the asymptotic behavior of the general integral
function of order > 0—a problem to which considerable attention has been
devoted in recent years® and in connection with which we have entered into
considerable detail owing to the importance of this and other analogous con-
siderations in the general theory of functions. Under (b) we have eventually
considered (§§ 28, 29) the asymptotic behavior of functions defined by power
(Maclaurin) series—a subject of evident importance owing to the essential
réle of such series in analysis. The treatment for the latter is brief and indeed
but fragmentary, yet it is believed that the most important known results (aside
from those which concern the solutions of linear differential or linear difference
equations)? have been indicated.

The determination of the asymptotic character of functions defined in other
ways than as infinite products or infinite series might well have been considered
also in the present chapter, as likewise the corresponding problem for certain
noteworthy special functions.® We have, however, limited ourselves in the
manner indicated above, feeling that not all aspects of the subject.could receive
treatment within the limits of the chapter while those of the greatest permanence
in the general theory of functions have been included, we believe, through the
present selection.

19. Example 1. To obtain asymptotic developments for the function

S 1

M F& = L iig e
We here choose a function which, as a result of the well-known formula®
tanz & 1
2z Z——_—_

"= 2n + 1)27%2 -2

3 See note at the bottom of page 44.

4 See Chapter III.

$ For miscellaneous investigations of this description, see Barnes, Edinburgh Trans.,
Vol. 19 (1904), pp. 426—439; Proceedings London Math. Soc., Vol. 3 (1905), pp. 273-295; ibid.,
Vol. 5 (1907), pp. 58-116; Transactions Cambridge Philosophical Soc., Vol. 20 (1907), pp. 253-
279; Quarterly Journ. of Math., Vol. 38 (1907), pp. 116-140; HarpY, Quarterly Journ. of Math.,
Vol. 37 (1906), pp. 369-378; LitTrLEwooD, Transactions Cambridge Philosophical Soc., Vol. 20
(1907), pp. 323-370.

¢ See, for example, Tannery’s * Introduction & la Théorie des fonctions d’une variable ”
(Paris, 1886), § 117.
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may be evaluated in the form
(2) F(z) =

ret*—1

e+ 1°

and this fact will enable us to check our subsequent results.
In order to obtain the asymptotic developments of F(z) as defined by (1),

let us place
1

fl(w) = Cu+ 1)+ 2

and regard z as having any fixed value z = p + i, 1 = v— 1, lying in a sector
(center at z = 0) situated in the right half of the z complex plane and having
neither of its bounding lines coincident with the axis of pure imaginaries. Then
fs(w), considered as a function of the complex variable w = z + ty, satisfies the
conditions demanded by Theorem IV (a = 0) of Chapter I, except that in case
|g|> 1 the same function will present a single pole of the first order at the right
of the pure imaginary axis, this pole being situated at the point w = (— 1 — 1)
ifg>1andatthepointw=3(—1+1w)if¢g< — 1.

Thus we may apply the theorem, subject to the remarks of § 11, in order to
obtain an expression for the sum

z-—-1

’Zo fix); x> »p.
We shall now distinguish between the following four cases: (a) |¢|< 1,
®e¢>1,@@e<—1,(dg==*x1
In (a) we may make direct application of the theorem. Taking m = 0, we
thus obtain

S dz 1
® Lmriyrs-Ct) mroyret mriaet e

where

@ Q) = — i f Let i) —fa=i,

and

1
b) C.= A+ 2,(0).

In these results let us now allow z to increase indefinitely, observing that

1 22+ 171==
f m [arc tan ]

x=0
and that lim Q,(x) = 0. We obtain

L N S |
—42 238.1‘0 anz

4
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[ 4 1 1 1
F(@z) = T TN T tan>

©®

N e 1 1 dy
+z~£ [(1+2iy)”+z’— (a- 2iy)2+z=]em_ 1

Upon developing the various terms of the second member in ascending powers
of 1/z, we thus reach (Theorem V, Chapter I) the relation

™ F@) ~p+ 3+ a+3+

in which the coefficients as, a4, as, - - - may be evaluated to any desired point.”
In case (b), equation (3) and hence (6) also, will continue to hold true ac-

cording to § 11 provided that we subtract from its second member the residue

of the function

8) 271

( (2w + 1)* + 2[e*"** — 1]

at the point w = — }(1 + 42) which (residue) is readily found (cf. (30), Chapter

I) to be w/2z(e** 4+ 1). Since, for values of z within the proposed sector, this
function is developable asymptotically in the form (50) of Chapter I with

a0=a'1=a2="'=0,

it follows that relation (7) holds true also in case (b).

Similarly in case (¢) we have equation (6) except (cf. § 11) that we must now
subtract from its second member the residue of (8) at w = (1 — 4z) and also
that of the function 2xif,(w) at the same point; <. e., we must subtract the ex-

pression
T ™

ki
“nemF D) T % B 1)

Thus, as in case (¢) we see that relation (7) again holds true.
Moreover, the same relation continues in case (d) as appears by writing
F(2) in the form

1 < 1
Tt ZET T e
and applying the method of case (a) to the summation here appearing; also
recalling that in one and the same region there can exist but one asymptotic
development for a given function.

Similarly, if we note the effect in (4) of supposing the real part of z to be

negative, we find that when 2 is situated in a sector lying within the left half of

7 It may be noted that by using a sufficiently large value of m in applying Theorem IV (Chap.
I) we may obtain any one of these coefficients in a relatively simple form involving the Bernoulli
numbers.

FQz) =
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the plane, relation (6) continues to exist provided that the term /42 be replaced
by — v/4z.

Thus in summary we may say that throughout any sector (vertex at z = 0)
of the z plane which does not contain portions of the pure imaginary axis, the function
F(2) defined by (1) may be developed asymptotically in the form

Fo) ~ 2T+ 24584

wherein the upper or lower sign 1s to be taken according as we are dealing with a
sector in which the real part of z 13 positive or negative.

This result, which is at once seen to be consistent with the known relation
(2), illustrates in simple manner the way in which asymptotic developments for
a given function may be ascertained, at least in some cases, by means of the
general theorems of Chapter I. This will be further illustrated in what follows,
wherein we shall eventually consider cases of much greater generality.?

20. In § 19 we have considered asymptotic developments of F(z) (cf. (1))
which are valid in sectors situated in the right or left halves of the z complex plane.
We proceed to show how the same method may yield analogous developments
holding for the upper and lower halves of the plane, exception being made natur-
ally of those (pure imaginary) points corresponding to the values

z2= =% (2n 4 1)3; n=20,1,2 .-

at which F(z) becomes infinite.
For this let us consider the function
. o 1
&(z) = F(iz) = Zm.

n=0
Regarding z at first as real, we place

_ 1
o) = G F 17— 2

and again undertake to apply Theorem IV with m = 0. This can be done only
in case ¢,(w) is analytic in w throughout the right half of the w plane. How-

3 In the special instance before us it may be shown that as = a¢ = a¢ = :-- = 0. In fact
if we substitute in (7) the form for F(z) given by (2) we obtain

x[ers—1 Fr 1 as , a4

A bl RE - Re i B S-S
where the upper or lower sign is to be taken according as the real part of z is positive or negative,
and this relation is seen to be true when a3y = @ = as = --- = 0. It is to be noted, however,
that in general if a function is defined by a series of the type of (1) (cf. (12)) no formula analogous
to (2) is at hand. The indicated method for determining the asymptotic development of the
function, however, remains the same, thus leading to coefficients ao, a;, a3, - -+, which are in
general not all equal to zero.
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ever, we are concerned with large values of |z|,and whenever |z|> 1 it is evident
that ¢.(w) will have a pole of the first order within the indicated region at the
point w = (2 — 1)/2 or w = — (2 + 1)/2 according as z is positive or negative.

Let us first consider that z is positive. We proceed to apply the theorem,
subject to the remarks of § 11.

Since the residues rg, 5’ of the functions

2mip,(w), 2w é,—,ﬁ:,(’f_)

at w = § = }(z — 1) are respectively

L n
2z’ 2uz(e™* + 1)
so that
T et —1

— ’ - - ——
= ey
we may write (at least when z > 1(z — 1))

=! 1 T e "t —1

,z=;,(2x+ 1) -2 =0 +4zze"'+1

. (s—1)—¢ z dz 1 1
+1«13(j: + )(2$+1)’—2’—5(2x+1)2—z’+9'(z)

#(s—1)+e

in which C, and Q,(z) are obtained by changing 2% to — 2? in (4) and (5).
But from elementary considerations, the third term in (9) reduces to

G+ 12z+1—2)
(z DECz+1+2)°

Whence, upon allowing z to increase indefinitely we obtain (z > 1)

ks e"" -1 1 1 241
@) = meiritai-d T & %1

l

(10

1 f [ 1 _ 1 ] dy
iy LQF 22— Q-2 —2 |ev—1
and hence (Theorem V, Chapter I)

el

(11) Q(z) lru + 1 + + z4+

where b, by, - - - are determinate constants.

This result may now be generalized to all values of z belonging to a sector S
(center at z = 0) lying in the right half of the z plane, exception being made, as
already indicated, of the pointsz=2n+1;2=20,1,2, ---. In fact, we have
but to suppose |z|> 1 to have in (10) two expressions equal for positive values
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of z and each analytic throughout S and hence equal for all values of z in the
same region.’ Moreover, the last term in the second member (like the two
preceding) is readily seen to be developable in ascending powers of 1/2% thus
leading to a series which, in the sense of § 13, represents the same term asymp-
totically for all values of z in S. ,

Likewise, the same relation (11) is found to hold true for a corresponding
sector in the left half of the plane, exception being made of the points

a=—(@n41); n=012 .-

so that, having replaced z by — 42, we may say in summary that throughout
any sector (vertex at z = 0) of the z plane which does not contain portions of the real
azis, the function F(z) defined by (1) may be developed asymptotically in the form
T et — 1 bg b4
Fo~geitatat
This result is again seen to be consistent with the known relation (2).1°
21. Generalization of Ezample 1. The method above illustrated for deter-
mining asymptotic developments is in general applicable to functions F(z)
defined by series of the form ‘
_ 3 Hm)
F& = 25 + 2
where p(z) is an integral function of z and where N(n), u(n) are functions of n
such that Theorem IV, subject to the remarks of § 11, may be applied to the
expression

_ u(w)
54 = 50y + 26)

in order to find for a given value of z the sum

z—1
zgof 5().

We observe in particular that by taking p(2) = 29 (¢ = tnfeger = 1) the
expression F(z) (or the sum of a number of such expressions) comes to include a
wide variety of functions having radial clusters of polar singularities in the
neighborhood of the point z = o —a characteristic common to many of the
more important functions of analysis.

In cases where f,(w) cannot be considered as a function of the complex

? It may be remarked that the last term in the second member of (10) is analytic throughout
8 ([z| > 1) because the improper integral involved converges uniformly for values of z in any
sub-region 8’ of S whose boundary does not touch the boundary of S. (Cf. Oscoop, *“Encyklo-
pédie der math. Wiss.,” II, 2, § 6.)

10 In view of the same relation it appears from (11) that in the present simple case we have
by = by = bs = .-+ = 0 and that the symbol ~ may be changed to =. Cf. note 8, p. 35.
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variable w = z + 1y but is continuous in the real variable z we may frequently
determine the desired developments by use of Theorems I, IT or III of Chapter I
(subject possibly to the remarks of § 10). The manner in which Theorem I may
be thus used will be shown in the following example wherein an important
type of function F(z) different from that of § 19 is taken.

22. Example 2. To obtain asymptotic developments for the function

2 2
(12) F(z)=g[1+;,].
As in example 1, this function may be evaluated beforehand and takes the
form

T3 e—"

¢ = n
(13) F() = T omz °

thus furnishing a check upon our subsequent results.
We begin by writing

(14) log F(2) =glog[1 —!—%:] = lim[z;:log @+ 2 — 22103 z].

z=00 x:

From § 12 we have

z—1

as) -2 ;logx = —2log'(z) = — log 2r — 2(x — %) log =
+ 2z + wi(2); ljx+n wi(z) = 0.

We proceed to apply Theorem I (Chap. I) with m = 1 to the first summation
in the last member of (14), taking for this purpose f(z) = log (2* + 2*) and
supposing for the present that z is real but different from zero. The theorem
may be applied since the series (37) (Chap. I) becomes

@ 1 dz

0@ =3 [{fwe+a} a0
y=zJ0 z=y+t

which, as in (38), may be written in the form

—%i{%log(x’-!—z’)} : 0<6,<1

y=s z= +6,
and is therefore convergent.
Thus we have
z—1
leog @@+ 22 = 3 log (1 + 2% + Q,(1)
aae)y =

+ j“ log (z* + #)dz — } log (& + #) + Lu(2).

11 See, for example, TANNERY, . ¢., § 121.
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Moreover,

flog (22 4+ 2)dx = z log (22 + 2*) — 2z + 2z arc tanz
so that by combining relations (14), (15) and (16) we obtain

log F(z) = — log 2 — %} log (1 + 2*) — 2z arc tan§+ 2 —-Q,Q)

+ lim[(x -b log(l +:—:)+ 2 arctan§+ wi(z) + ﬂ,(:c)].

But
lim (z — %) log(l + g) = 0; lim w;(z) = 0; lim Q,(z) = 0,

and, supposing at first that z is positive, we shall have lim 2z arc tan (z/2) = =a.

Therefore, we may write (z real > 0)

17) log F(z) = — log2rz+n—}log(1+-:—,)+2(l —zarctan%)—ﬂ,(l).

On the other hand, if z is negative we obtain

log F(z) = - log (— 2m2) — 7z — % log(l +§-,)
(18) '
+ 2(1 — zarc tan:'—x)— Q,(1).

We now observe that the expression 2,(1) is a function of z which is single
valued and analytic in any region whose boundary does not cross the axis of
pure imaginaries. Whence, within any region A, situated in the right half of
the z plane, equation (17) may be used, while similar remarks apply to equation
(18) for values of z pertaining to any region A; in the left half of the plane. More-
over, if the boundaries of A; and A; are not tangent to the pure imaginary axis
at o, the function Q,(1) vanishes like 1/22 when |z|= « in A; (or As) and is
developable asymptotically by Theorem V, Chapter I, in powers of 1/2* within
this region. It therefore remains but to apply the result stated in § 15 in order
to say that throughout any sector (vertex at 3 = 0) of the z plane whick does not
contain portions of the pure imaginary axis, the function F(z) defined by (12) may
be developed asymptotically in the form

et'.

+
F@z) ~ 2%z

b+§+$+~],

wherein the upper or lower sign 18 to be taken according as we have a sector in which
the real part of z is positive or negative.
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This result is at once seen to be consistent with the known relation (13).12

23. We proceed to show how asymptotic developments for the F(z) of § 22
may be obtained which will be valid in sectors that may include the pure imagi-
nary axis. For convenience we shall convert this problem into the following:
““To determine asymptotic developments for the function

. o 22
19) P =aw =11[1-%],
which shall hold good throughout certain sectors that include the real z axis.”
Considering at first that z has a fixed, positive, non-integral value > 1, we
proceed (cf. (14)) to study the expression

z—1
(20) H(z) = hm[Zlog (2—22)—2 Z,:log z]
in which we agree to write log (22 — 2?) = log (3* — 2?) + vt whenever z < 2.
Then ™ = &(z).

In order to obtain a form analogous to (16) for the first sum here appearing,
let us place ¢,(w) = log (w 4+ 2) + log (w — 2), in which it is understood that
the function log (w — z), considered as a function of the complex variable w,
is rendered single valued throughout the right half of the w-plane by means of a

cut extending from the point w = 3 vertically downward to the point w = «,
We shall then have

z—1 z—1

(21) :}:_,:log (x2— 2% = Z;cp.(z) Zlog (x + 2) + Zlog (x—=2)

and we may at once apply Theorem IV (m = 0) of Chap. I to the first sum in
the last member, thus writing

z—1

Dlog (x+2) =3 log 1+ 2) — 2.(1)
22) z=1
+ f’ log (z + 2)dz — } log (z + 2) + Qu(),
Whel‘e o d
(23) Qu(2) = —ij; 108(:-1-::1:)5-:3./. 1°

The second sum, however, can not be treated in the same manner owing to the
presence of an essential singularity of the function log (w — 2) at the point
w = 2. In this case a related method yields the desired result as we shall now
show.
12 By means of (13) we may show (cf. note 8, p. 35) that in the present instance
m=a=a=" =0
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Let us take for this purpose the integral of the function

Jo(w)
p(w)’

fsw) =log (w—2), o) =e"—1

with respect to the complex variable w from the point w = z — ij (j = any
real, positive value, arbitrarily large) situated on the right side® of the above
mentioned cut, around the open contour ABCDCEFGFHI indicated in the
following figure, the integration terminating at the same point on the left side of
the cut, and it being understood that the two closed loops CD and FG include

respectively the points w=2,3,4, ---,pandw=p4+1,p+2, ---, 2 — 1,
where p is the integer for which » < 3 < p 4 1; it being understood also that the
closed curve BCEFH forms a circle of arbitrarily small radius ¢ with center
at the point w = 2. _

1t follows from (30) of Chapter I that we may then write

3 - [ @ fs(w)
Elog (x—2) = @‘p(w) dw + ,gcp(w) dw,

where CD and GF denote respectively that the indicated integrations take
place in the positive sense along the closed contours CD and GF.
Whence, we have also

(24) ‘Z:é log (@ —2) =1log (1 —2)+ fs(w) d

¢ e(w) v L p(w)

Js(w) P

W,

in which C indicates an integration over the entire contour from A to I, while
L indicates an integration over the open loop ABCEFHI.
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Let us now replace C, as may evidently be done, by the figure in part rec-
tilinear and in part semicircular Abedefghijkl whose vertical sides (produced)
pass respectively through the points w = 1, w = z. With the understanding
that the radii of the arcs ik, cde are each equal to ¢, we have now but to refer to
the processes employed in § 8 to see that by taking j = « we may write (24)
in the form

z-—1
Dlog(z—2) =3%log (1—2) —Q_,(1)+ f log (w — 3)dw
(25) *=* ot

— 3 log (x — 2) — Q_,(x) + E(e) — 't%

where the path M extends from w = 1 to w = z over the curve 1FECz, where
L, denotes the path resulting from L by placing j = «, where ©_,(z) is the
expression obtained from (23) by replacing z by — 2 and where E(e) denotes
an expression which becomes infinitesimal with ¢ and may therefore be at once
neglected.

Now,

(26) j‘; log (w — 2)dw = [(w — 2) lOg (0 — 3) — w]*=:
=G@E-Dlg(l-a+1+G=logkz—2-=
Again, we may write

{:w) log (¢#"* — 1) ,

= — —_— —2v w0
o(®) dw log (w — 2) log (7" — 1) — 2” py—
as appears by an integration once by parts. Whence,
f.((w)) dw = log [¢7" ¥~ — 1] — log [¢™*"* — 1].
Upon placing j = © and making use of the relation ¢™2"¥* — 1 = — 2¢¢™"* sin xz

it thus appears that the last term of (25) (the coefficient — 1 included) is equal to
— log (— 1) + log (— 2¢) — miz + log sin vz = log 21 — mz + log sin =.

Let us now combine relations (20), (21), (22), (25) and (26), availing our-
selves also of (15) and of the facts just observed concerning the last term of (25).
Noting mutual cancellation of terms and placing 2 = o in the final result, we
arrive at the relation

H(z) = log sin 7z — log 27 + log 2¢ — xiz — 4 log (1 — 2*)

+2log [0+ 2 = 2,(1) — 20D,

If we now write

. 1\ 1- . -1
—}log(l—x’)=—logzz—}log(l—;); zlogﬁ_—:=m+zlog:T1-
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and then introduce the relation
— log 2z — log iz + log 2¢ = — log 7z
we may therefore write

@ =1og *2% — j10g (1~ 3 )+ (24 2log 27 ) - (2.0 + 2,01

Similarly, we arrive at the same result when z has a negative non-integral
value.
Furthermore, the fun:tion

2.0 + o = =i [

- Ta+ar-#7 4
log [(1 )= z’]e"” —1

is single valued and analytic throughout the portions of the z plane lying to
the right of the line 2 = 1 + ¢y and to the left of the line 8 = — 1+ ¢y while
the same function is developable asymptotically by Theorem V, Chapter I,
throughout the same regions in the form

a Q4 Qg
atatst-
Noting that for the function ®(z) defined in (19) we have ®(— iz) = F(3)

where F(z) is the original function (12), and recalling also that

sinw(—13) e —e"*
w(—1z) 273

’

we may say in conclusion that throughout any sector (vertex at z = 0) of the =
plane which does not contain portions of the real axis, the function F(z) defined by
(12) may be developed asymptotically in the form

w5 _ ¥

F@z) ~ e —¢e

272

[1+2+%+.].

This result is seen to be consistent with (13).
24. We proceed to the following more general problem:
Ezample 3. Given

F(z) = fI(1 —ﬁ)

n=l

_ ® _z— 1 i ". p=integer§1“
F(z)—H(l“nw)eng;p(n‘”)’ {pép<p+1

n=l

according as 0 < p < 1lor p = 1. To determine asymptotic developments for F(s).
18 We adopt the familiar notation exp z for e®.
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This problem, in view of the important réle which the F(z) thus defined plays
in the modern theory of integral functions, has already received considerable
attention.!* Our purpose here will be to deduce through a uniform method based
on the fundamental theorems of Chapter I the known results together with
others of a supplementary character.!s

We shall suppose at first that p is non-integral and > 1 (p < p<p+1,
p = integer = 1). Also, for the present z is to be regarded as having any fixed
value (real or complex) except one of the following: 2!/, 3t/¢, 4V, ...,

The method then requires that we take for consideration the expression
(cf. (20))

@) He =lim[ Siog e~ —oSlogz+ ZEHZ) ] o=

z=1 z=1 z=1 p=1 ¥

in which the value to be assigned to log (z” — z) may for the present be taken in
any manner consistent with the equation exp log (z° — 2) = 2 — 2.

Then exp H(z) = F(z) where F(2) is defined as above.

We proceed to study the behavior of the first term appearing in brackets
in (27) when z is large.

Following the method of § 23, let us place

fo(w) = log (w* — 2),

where w° is understood to be so defined as to be real when w is real and positive
and where the logarithmic function is understood to be rendered single valued
in w throughout the right half of the w-plane by means of a rectilinear cut ex-
tending from the point w = z* vertically downward to the point w = «, the
value of 2* being determined in accordance with the following conventions: if
2 = r(cos ¢ + 1 sin ¢) then 2* = rP(cos pp + ¢ sin pp) subject to the relation
—2r < ¢ =0. The function f,(w) having been thus defined and defined
uniquely for every value of w whose real part is positive, let us now impose for
the present the additional condition upon z; viz., real part of 2* > 1; ¢. e.,
r? cos pp > 1. Next, let us consider the complex integral

fo(w) ;
w; w) = 2" — 1
[l ow

U See MELLIN, Acta Soc. Sc. Fennicae, Vol. 29, No. 4 (1900); BARNES, Philosophical Trans.,
Vol. 199A (1902); LINDELOF, Acla Soc. Sc. Fennicae, Vol. 31 (1902), p. 53; WimaN, Arkiv for
matem., Vol. 1 (1903), p. 105; MaTTs0N, “ Contributions & la théorie des fonctions entidres ”
(Thése, Upsala, 1905); HarpY, Quarterly Journ. of Math., Vol. 37 (1906), pp. 146-172; Forp,
Annals of Math., Vol. 2 (2) (1910), pp. 115-127.

15 It may be observed that this problem differs from the earlier more special ones of §§ 19,
20, 22 and 23 in that no formulae are at hand analogous to (2) and (13) by which we can predict
beforehand the character of the solution. The present problem therefore illustrates to good
advantage the value of the methods which we have been using.
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taken from the point w = 2* — 4j (j = any real, positive value, arbitrarily large)
situated on the right side of the above mentioned cut, around the open contour
C = ABCBDEFGHGI indicated in the following figure, which contour, as a
result of the above condition r* cos pp > 1, necessarily includes the point w = 2°
within its interior, it being here understood, as in Fig. 2, that the point I is the

g
0, f
F||D
hig ani e
H M
J
IA b

o

Fic. 3

one on the left side of the cut corresponding to A and that the closed loops BC
and GH include respectively the points w =2, 3, 4, ---, ¢ and w =q+ 1,
g+ 2, -+, (x — 1) where q is the integer for which ¢ < real part 2* < ¢ + 1';
also that the curve DEF forms a circle of arbitrarily small radius ¢ surrounding
the point w = 2*.

Corresponding to relation (25) of § 23 we thus obtain

z—1

Dlog(x* —2)=4log 1 —2) — Q,Q)+ j;log (w® — 2)dw

z=1

- o _ _ [ fw)
3 log (z z) + Q,(z) 1 @(w) dw

where M indicates an integration over the path 1GFEDBz,'” where L indicates
an integration over the path ADEFI in which, however, the points A, I are
now supposed to be taken at an infinite distance along the cut, and where Q,(z)
is given by the formula

18 In case real part z¢ = q = an inleger, the indicated loop HG, instead of containing w = ¢
in its interior, will have this point upon its boundary. To obviate the difficulty thus arising,
let it be understood in this case that the cut does not extend vertically downward from the point
w = z¢ but first extends an arbitrarily small distance to the right of this point and then vertically
downward as before. The reasoning which follows will then apply.

17 In case z¢ is real and > 1 the path M becomes the curve, in part rectilinear and in part
semicircular, 1FECz of Fig. 2; while if tmag. part 22 < 0 the path M may be taken as the straight
line 1z (Fig. 3).
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“log [(z + 1)7 — 2] — log [(z — iy)" — zl
@ n@=-if .
or " e P
29) o = —i [ log| EED =2

it being understood that the integrand of (29) is so defined as to be equal for
all values of z and y to the integrand of (28).
Now, an integration once by parts shows that

fIOg (w” — z)dw = w log (w* — 2z) — ow — oz wadt 3°
Whence,
flog(w’_z)d"’:“’log(l"—Z)—n—aZf e log(1—2)+o.
ol MW — 2

We have now but to recall the formula (15) to see that the first two terms in
the square bracket of (27) combine into the following:
z—1 z—~-1

Zlog(w —2z)—cXlogz= ——log21r—%log(1—z)

=1

(30) —n.(1)+w(x)+a+<z—%) log(l—,%)

fs(w)
pTY (@) = f p(w) dw.
We turn next to consider the third term appearing in square brackets in (27).
By use of the well-known relation?®

-0z

ni—t . real part p > 0,
@ =1+ 2¢+ 3¢+ -+ (n 1)t+ + 0(n); lim 6,(n) =0 °

wherein { represents the Riemann ¢ function, we may write

SE2) -Eeemi+ L2 (’”"")+s.(z)

z=1 y=1 ¥ v=1 V 1 - oy

@1 D e N e

,51 O'V)z

o r—1 + El(x)’
lim £,(z) = 0.

Whence, upon observing that the sixth term in the second member of (30) is
of the form

- Z .._1+ 2(z); limg(z) =0

z=0

18 See PETERSEN, “ Vorlesungen tiber Funktionstheorie” (Copenhagen, 1898), pp. 161-169.
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also that lim Q,(z) = 0, we arrive at the following relation after combining

(27), (30) and (31) and placing z = @

fs(w)
o(w)

(32) H(a) = —%log 2r — }log (1 — 2)—Q,(1)+ i:; ¢(ov) %.+S(z) —j;
where P
(33) 8@ = lim o‘[l + 2 T e :y)z,,_, —3 j; — “ z].

The properties of S(z) will be considered in further detail later. For the
present we turn to the last term of (32).
By placing

dw dw
U= fl(w) = IOg (w’ - z)) dv= ‘P(w) = v 1
so that .
ow’ 1 viw _

du = o — zdw, V=5 log (¢ 1)

it appears that
fs(w) 1 )
dw = ;—log (w* — 2) log (7" — 1)

(34) o(w) 2m

dw.

o fw"' log (e72"% — 1)

27t w* — 3

Now, the difference between the value of the first term here appearing on
the right when considered at the point w = A and its value at the point w = I is

(35) log [— 1 + exp — 2wt (real part 2* — 4j)]

as appears by making the substitution w® = s or w = 8" and evaluating the
resulting expression between corresponding s limits. Moreover, by means
of the same substitution the second term in the right member of (34) becomes

1 [(log[— 1+ exp — 2ws?]
- ds
2m 8—3z

(36) )
where the integration is extended over a contour in the s plane which includes
no singularities of the integrand except the simple pole at 8 = z. But the value
of (36) is evidently the negative of the residue of the integrand at the point
8= 3;1 e, — log[— 1+ exp — 2mizf].

Since the expression (35) becomes log (— 1) in the limit as j = oo, it thus
appears that

fs(w)

37 | o) dw = log (— 1) — log [— 1 4 exp — 2m*].

If in (32) we place log (1 — 2) = log (— 2) + log (1 — 1/2) we may there-
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fore write the original function F(2) in the form

(38) F(z) = A(2)B(2),
where
et —1 g1 2 gin xp

—NZ2or — i Nowr

AQR) =

and
(39)  B() = exp [gg(w)";'+ 8z) — (1) — } log (1 —}‘)]

Thus far we have supposed z to have any value (real or complex) such that
g+ n’?; n=1, 2 3, ---, and such that having placed z = r(cos ¢ + ¢ sin ¢)
and agreed to write 2° = r°(cos pp + % sin pp) with — 2xr < ¢ =0, we have
r* cos pp > 1. We now proceed to study in further detail the expression B(z)
and for this it is desirable to remove for the present all restrictions as regards z,
thus enabling us to determine certain functional properties of the same expression.

We turn first to the expression Q,(1) which appears in B(z) and which by
reference to (29) is seen to be defined by the relation

. (l+iy)'—z] dy
(40) ﬂ,(l) = zj:log[(l _— 'iy)" —zle*v—1"
For a given value, real or complex, of z this 2,(1) evidently has a meaning unless 3

be such that the equation (1 & ty)° = z has a real solution in y. In order to
determine the values of z for which this happens, let us place

2 = r(cos ¢ + 1 sin ¢)

and make the conventions already indicated as to the meaning of 2*. For the
exceptional values in question we must then have 1 &+ 1y = r?(cos pp = ¢ sin pg)
so that the same values are those lying on the locus of the equation * cos pp = 1;
— 2r < ¢ =0. Whence, if r be large the same values will tend to have an
argument of the form — (2n + 1)7x/2p wherein n is a positive integer for which
the same argument lies between — 27 and 0. Again, if the locus just mentioned
be drawn, the z plane is thereby divided into portions in each of which Q,(1)
is a single valued, analytic function of 2, since within any sub-region " lying
wholly within such portion the convergence of the integral in (40) is readily seen
to be uniform. Moreover, if arg z has any value other than one of the exceptional
type just mentioned, we may write lim 2,(1) = 0. In fact, upon reference to

Theorem V, Chapter I, it appears that under such hypotheses we shall have
@, 0 G,
Q’(l)~z+z’+z3+ )

where the coefficients ay, as, - -+ may be obtained by expanding the integrand
of (40) in ascending powers of 1/z and integrating term by term.
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Secondly, we turn to the expression S(z) defined by (33). Since

-

v=1 L Vp(.w z) ’

we may write

(41) 3 cdw = i z’ v'—l+ z”“fw dw

w -2z =(1l—oovw P(w® — 2)°

Whence, recalling that M extends from w = 1 to w = z, we obtain the following
relation:

(42) 8(z) = o’[

Eila [ =)

where N represents the path obtained from M by supposing ¢ = + .

In the consideration of this expression we have thus far considered that
real part 2 > 1 and from what has already been noted it follows that if we have
also 1mag part 2» < 0 we may replace (42) by

(43) S@) =90 [v=° i

0 d.’t ]
z°?(z° — 2) |
The form of (42) may also be simplified when tmag part z* > 0 (real part
2* > 1). Infact, we may then write

(44) j;,,,—(,,,ﬂ’:yﬁfmdx—_?)‘fw—mwfz‘)

where the last symbol represents an integration in the positive sense about the
circle.

Moreover, the last term of (44) is readily evaluated and found to be equal
to 2mwipz* P,
Thus, when tmag part z* > 0 (real part > 1) we may write

(45) 8@ =0 [g - fﬂ — g7h j; i FGdL—?)] + 2ripzr.

These facts being premised, let us consider the properties of the right member
of (43), all assumptions as regards z being laid aside for the moment. Evidently,
the expression in question represents a function of z which is single valued and
analytic in any region T which does not cut the portion of the real z axis extending
from z2=1 to 2= + . Moreover, when |2|< 1 we find upon expanding
in ascending powers of z that the same expression is developable in the form

© v @ v

(46) oy ——=32

yml=—av Sp—v

For large values of |z| the properties of the right member of (43) are now
5
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derivable by means of the following Lemma which we shall state and prove at
this point and to which we shall have occasion to refer frequently throughout
what follows.

Lemma.?® If the coefficient g(n) of the power series

a = inleger, posilive, negalive or zero

47 é 9m="s L dius of convergence > 0

is such that (a) when considered as a function g(w) of the complex variable
= z + ty it is single valued and analytic throughout all portions of the w
plane lying to the right of (or upon) the vertical line w = a — 3 + <y except for
a finite number of poles situated at the points w = Ay, e, <+, A, +++, Aa; Ae F -
teger = a® and (b) is such that to an arbitrarily small positive quantity e there
corresponds a positive constant K (independent of z and y) such that

g(z = 1y) a

9(x)
for all values of z = a — 4 and for all positive values of y sufficiently large, then
the function f(z) defined by (47) when |z]< r may be extended analytically
throughout the whole z plane with the exception of the positive half of the
real axis, and throughout this region will be defined by the equation

(=1 g —}+@)(— 2% 3
2 J_o cosh 7y dy — ér,

< Kexpey

(48) f@) =

in which, if we place 2 = r(cos ¢ + 1 sin ¢) it is supposed that we write
(— 2)* = = exp [(a — § + 1y) log (— 2)]

= exp [(@ — % + ) (log r + ip + im))]
and take — 27 < ¢ < 0 and in which r, represents the residue of the function

w)(— 2)*
(49) wg(sir)x(m )
at the pole w = \..”

For the proof of this lemma let us at first suppose for simplicity that g(w)
has no poles at the right of (or upon) the vertical line w = a — 4 + 4y and let
us regard z for the present as having any fixed value. The lemma then results
from a consideration of the result obtained by integrating the function (49)

19 Cf, LINpELSF, “Calcul des résidus” (Paris, 1905), p. 109; also, Forp, Journ. de Math.,
Vol. 9 (5) (1903), p. 223; also, Bulletin of Amer. Math. Soc., Vol. 16 (2) (1910), p. 507.

20 This condition is fulfilled from the fact that g(n) has a meaning whenn =a,a + 1,a + 2,

++. Otherwise the given series (47) would lose significance.

2 This condition is satisfied in particular if constants C; > 0 and C: = C) exist such that
C < lgw)| < Ch.
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about the rectangular contour C, formed in the w plane by the lines
=a—3%+1y, w=34+2n4+y, w=zty

where n is any integer such that 2n > a and where j is any positive quantity,
arbitrarily large. Upon applying (30) of Chapter I to the result of such an
_integration, we arrive in the first place at the relation

g(w)(— 2)* z)"

(50) Z g(m)z = 2—2 pp—

Supposing at first that z is real and negative, we proceed to study the integral
here appearing in further detail.

First, along the side of C, upon which w = z + 4j we have dw = dzr and
sin 7w = sin w(x + ¢j) = sinh 7j(sin #z coth 7j + % cos mz) so that if we call
the contribution from the side in question I, we may write

(=2 f"* g(x + ) (— 2)*

"~ 24 sinh 7] Jsy; sin 7z coth xj + ¢ cos 7z
Whence }im I = 0 provided that
(61) lime™gx+14)=0; z2=a-—3%
J=w

Similarly, we find the same result for the contribution arising from the side
of C» upon which w = z — #j provided, however, that
(52) lime™igx—14)=0; z=a-—3%.

J=o0

We observe that both conditions (51) and (52) are satisfied in the present case
as a result of (b) of our hypotheses.

Next, let us consider the side of C, upon which w = 4 + 2n + 4y. Here
we have dw = idy, sin 7w = cos ¢y = cosh 7y so that having taken j = o,
the contribution in question becomes

P Gkt bl R € S e )| Gl il
2 o cosh 7wy

)

and it follows from (b) of our hypotheses that the improper integral here appearing
has a meaning (2 real and negative). Moreover, it follows likewise that if
|s] < r we shall have lim J = 0.

Whence, if we now take account of the contribution arising from the remaining
side w = a — } + %y of Ca, noting that we here have sin 7w = (— 1) cosh »y
while the integration takes place from y = + ® to y = — ®, we may write

J . (=1 rog(a — 3+ 1y)(— z)Hw
(53 o = gL [CEATATME g
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This relation must hold good as we have indicated, for all values of 3 which
are real and negative and such that 2| < r. But the first member represents a
function of the complex variable z which is single valued and analytic throughout
the circle of convergence of (47) while the second member, with the conventions
introduced in the lemma as regards the meaning of (— %)+ represents a
function of z which is single valued and analytic throughout the whole z plane
except for the positive half of the real axis. In fact, for all values of z in a region
T which does not cut or touch the positive half of the real axis we shall have
from the indicated conventions — # < ¢ < = so that upon introducing (b) of
the hypotheses it appears that we may choose € so small that the improper
integral in (53) will converge uniformly for all values of z in T. Whence, the
same integral will have the analytic properties just indicated, and we reach in
summary the lemma for the case in which g(w) has no poles to the right of the
line w =a — } 4+ .

That the lemma holds true in the more general case follows at once upon
noting that relation (50) then continues (n sufficiently large) provided we add
to its first member the expression

Z Te.
t=1

Returning to the second member of (43) which is defined when |z| < 1 by the
series (46), let us now apply the above lemma to the latter series, taking for this
purpose g(w) = 1/(p — w). Since the residue of the function '

w(— 2)¥

(54) (p — w) sin wp

at the pole w = p is — w(— 2)?/sin 7p, it thus appears that for all values of s
except those real and positive we may write the expression in question in the

form
x(— 2)°
simap + R(2),
where .
g [ (e
k@) = Q.L +3— ) coshmy ™

it being here understood that the expressions (— z)? and (— z)~# are to be
interpreted in accordance with the conventions stated in the lemma, 1. e., if
3 = r(cos ¢ + 2 sin ) with — 27 < ¢ = 0, then

(— 2)* = exp p(log r + ip + ix) = r’[cos p(¢ + 7) + 4 sin p(p + =)]
and
(— 2y H% = exp [(— § + iy)(log r + ip + i7)].

Upon referring to (43) and (44) it follows then, as regards the expression
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S(2) originally defined by (33), that throughout any region T of the z plane in
which real part z* > 1, tmag part 2> < 0 we shall have

(55) 8@ = "=} pw),

sin P

while throughout any similar region T, in which real part 2 > 1, 1mag part 2* > 0
we shall have
_m(—2)F
8() = s ————+ 2mipz* + R(2).

Hence, according as z lies in T'; or T, the expression B(z) defined by (39) takes

the form
B(z) = exp C(2) or B(a) = exp [C(z) + 2mip2”],

where

P
ow=3e(2)E+ T2 pog(1-1) - 00 + R@.

We note also that since R(2) is equal to 1/2m¢ multiplied by the result of
integrating the expression (54) from y = — © to y = + o along the line
w = — } + 4y it follows that we may replace R(z) by a similar expression R(z)
in which the path of integration is w = — k — } + iy (k = arbitrarily large
positive integer) provided this R(z) be increased by the sum of the residues of
the function (54) at the polesw = — 1, — 2, ---, — k. Moreover, since these
residues form the first k terms of a series of the form

(56) ao+%+:—:+---; a1, Ga, + -+ constanis as regards z

while lim z*R(3) = 0 it follows that the original expression R(z) is developable

|s|=00
asymptotically in the form (56) (arg z + 0).
It follows, then, upon reference to (38) and to the properties which we have
now established for 2,(1) and R(z) that we shall have the following relation in

which the upper or lower of the double sign =+ is to be taken according as z is
confined to T'; or T;:

67 F@) ~ 23;‘"exp[imn+5:r( )E+-S2.

=1 sin 7p

Upon observing that when tmag part 2> > 0 the function exp miz* is develop-
able asymptotically in the form (56) with ap =0, a; = 0, ---, while the same
is true of the function exp — m¢2* when tmag part 2* < 0, it appears that the
above relation may be simplified into the following holding good for values of =
in regions of either type T, or Ts:

(58) F@) ~ 2,,?“’_’"" [fﬁr( )z' = z)’]

v=t T sin .7
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This relation, as we have noted, holds true only when real part 2 > 1. We
now proceed to determine an analogous relation for any region T; in which
real part z* < 1.

If this assumption be made at the beginning, the cut in the w plane falls
entirely outside the rectangle bfgk so that we at once obtain (32) except that
the last term of the second member is lacking. Moreover, the expression S(z)
takes the form (55) so that, upon writing log (1—2)=log (— z)4log (1—(1/2)),
we have

H(z) = — 21—plog 27 —2—1’;103 (— 2)*— % log (l - %)— Q,(1)

(59) v\z" | w(—2)°
+50(7) 5+ G+ B
and hence ; . (— 2)°
v\2*  w(— =
(60) O~ e " [£:(3)5+%am )

Before summarizing the preceding results into a theorem it is desirable to
note certain corresponding results which may be obtained when z* is confined
to the real domain (1, 4+ ) —a case not included in the above discussion.

If this assumption be made at the beginning the corresponding Fig. 3 becomes
that represented in Fig. 2, except that the cut extends from the point w = z°
instead of from the point w = z. Thus we obtain equation (32) as before with
S(2) defined by (33) in which, however, the path M is now understood to be
1FECz of Fig. 2. We arrive, therefore, at (38) in which A4(z) is defined as
before, while B(z) is defined by (39) with S(z) given by (42) wherein N repre-
sents the path 1FEC 4 o. In this form S(z) is now developable (as was (43))
when |z| < 1 into the form (46) from which we find as before that unless

o=argz=0

the expression S(2) is given by (55). In other words, S(z) will be given by
(55) when ¢ has any one of the following values (for which z* as above defined
is real and positive) except the value ¢ = 0:
(61) 0}—2_#:—2‘—[’_6—19 "',_&T; —2LT>_2T-
P P P 3 P

Moreover, when ¢ = 0, S(z) preserves a meaning as appears from (42), provided
that 2 # 1, so that the same expression may be obtained from (55) when 2 = r
is large by placing therein z = r(cos ¢ 4 ¢ sin ¢), observing the indicated
conventions as to the meaning of (— 2)?, (— z)~#* and passing to the limit in
the resulting expression as ¢ approaches the value zero through negative values.

Thus it appears that when 2° is real and positive —i. e., when ¢ has any
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one of the values (61) —we shall have relation (57) in which the negative sign is
to be taken before the expression miz* which appears in the square bracket.
Upon noting the various sections of the z plane which correspond respectively
to regions of the types T, T: and T, we thus arrive at the following
THEOREM 1. Given the typical integral function of rank p (order > 0):

F(Z)=fI( .,,)exPi ( .,,) ;.  p=integer =1

n=l v=1¥

with the assumption that p is such that p < p < p+ 1.
If, having placed z = r(cos ¢ + ¢ sin @) we agree that z* and (— 2)° shall be
defined respectively by the equations

= r?(cos py + ¢ sin py); —2r<< =0
(— 2)? = r’[cos p(¢ + 7) + ¢ sin p(p + #)]
then for values of 2 of large modulus and lying within sectors of the type

4k
—4"2-::31r<<p<— 2-:;11; k=01,23,.---; —2r < <0
we shall have

F(z) ~T‘/___z)pexp[§§'(§)%'+ (5;1:);]

where ¢ i the symbol for the Riemann ¢ function, while for values of = of large modulus
and lying within sectors of the type

—4k2-:’_11<¢<—4k2;11r; £=0,1,2,8+; —2x<¢=0
we shall have
2smwz’ ' (—z)’
ro ~ 2 e[ Se ()4G0 |

promded ¢ does not have one of the exceptional values 0, — 2x[p, — 4x[p, — 6x/p,

Moreooer, for the exceptional values of ¢ just mentioned we shall have when |z|

18 large
F()~2j;%zpexp[ nz'+t§'( )z'+ (—z)p]

v=1 sin mp

In the following figure the sectorial regions indicated, I and II, represent
those in which for large values of |z| the first or second of the above forms
holds good respectively, while the dotted lines represent the special directions
along which the third form applies. It is to be understood that the last radial
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line drawn is that upon which ¢ = — 9x/2p, but that a complete figure would
contain all similar lines upon which

2k + 1
2p

™5 k=0,1,2 --- and ¢ > — 27,

the scheme of alternate division of the plane into sectors of types I and II being
carried forward up to and including the last sector thus obtained.

Upon noting that for values of z which are real and positive (z = r) we have

—m:z"+1r(._z)P= _Tir’+1rrpc03p1r+zsmpr

sin mp sin p7w

= xr® cot pr,

it appears that the above theorem is consistent with certain results of HARDY to
be found in the Quarterly Journal of Mathematics, Vol. 37 (1905), page 158 (later
corrected on page 373). For values of z for which arg 2 = ¢ + 0 the theorem
is not altogether consistent with the results of BARNES in the Philosophical
- Transactions, Vol. 1994 (1902), page 470, since an equivalent to the first of the
forms above is there assigned to F(z) for all values of z such that ¢ # 0 (]3]
sufficiently large). It is to be observed that both BArNEs and HarDY take for
discussion the function F(— 2) instead of the F(z) employed above.

25. In the discussion of the function F(z) of § 24 we have thus far supposed
p<p<p+ 1 where p is any integer = 1. The corresponding results for
cases in which 0 < p < 1 may now be readily supplied, it being understood
that F(z) assumes the first of the forms given at the beginning of § 24.

Proceeding as in § 24, we obtain equation (27) as before except that the
third term in square brackets is lacking. Whence, equation (32) continues
except that the terms involving the function { are absent, while instead of (33)

we have
S(z)=limo'[l—zf dw ]
z=m Hw — 2

Thus it appears at once that the theorem of § 24 holds true when 0 < p < 1
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> ( y ) z
v=1 § PJ VY
there appearing be then omatted.

26. We proceed to consider the remaining cases —viz., those in which p = p =
an integer. The function F(z) is then defined by the second of the forms appearing
at the beginning of § 24.

Equations (27) and (30) are now obtained as before, but instead of (31) we
write

SE(F)-ER () + ()

D L S

v=1 =1

provided that the term

z—l
ﬂ)x.,,_l + o2 g + 61().
Moreover, the last sum here appearing is evidently of the form
¢+ log x 4 0x(z); li_m Os(z) =0

where ¢ represents Euler’s constant.
Instead of (32) we thus obtain in the present case

HG) = —Glog 2 — }log (1 = 9) — 2.(1) + & §(an) &

(62)
+ coz? + S(z) — f'((:)) dw,
where
S(z) = li_m[a+ xz—% log(l - —)+az"loga:
(63) -

+,§v(1—a‘u)z"‘1 "fw —z]

The last term of (62) may now be evaluated as before, leading to equations
(37) and (38) in the latter of which A4(3) is defined as before while B(z) is now
defined by the relation

©9 B = exp| 10 Z o + 56 — 20 — 10g (1-3) |-

In order to study the functional properties of the present function S(z) we
first note that

e-blg(1-%)=-Z;F=+0@;  Ima@=o
—1 v p—=1 =1

2 =D ,._1+62 u

v=1 ”(1 - a'v)z’.bl v=l v=1 a—_m ;
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also that instead of (41) we may now write

dw =1 2’

* o d
v e ol 24 logw+z’+lj 1;(10%-—2)

2w —=2" =1l = aov)w
Whence, ,
=i _3_ 7 —_% #f—(L]
() ’1'1:1'[0 ,z=:,n"“+a§1—o'v ozt xw(w® — 2)

(65)

=y dw
= —ap gt | Y
"[,2,,:01—” 3 —3 lj,:-w(‘w’—z)]'

Upon expanding [w(w® — z)]™* in ascending powers of 1/z, supposing for the
moment that |z| < 1, we obtain
dw o g
— gptl _ = - = —_—
z j;ww'—z) pz"gov_*_l pz? log (1 — 2)
= pima? 4 pz? log (3 — 1).
Whence, under the present hypotheses relation (55) becomes replaced by

=1 v
S(z)=Zp y—-o'z"+1riz"+zvlog(z—1)
»=0 -
or, since
log (s = 1) = log s+ log (1= ) = log s = 2
r=0
=zp1°gz"p§_:l ul —5: L, [s]>1
v=0pP — ¥ v=1 (P+ V)Z" ’

we may write when |z|> 1

(66) S@) = — §+ xiz? + 2 log 3 + (3),

where r(2) is an expression developable asymptotically in the form (56).

The form (66) for S(z) is then that which corresponds in the present case
to (55) —. e., it holds for values of z confined to any region T sufficiently remote
from the origin throughout which real part z» > 1, imag part 2» < 0. The
corresponding form for regions T in which real part 27 > 1, tmag part z> > 0 is
obtained (cf. (44), (45)) by adding 2xi2? to the right member of (66). Thus,
instead of (57) we reach in the present case

2 sin w3? . = (y\z" 2? »
67) F(z) ~ 2:/27:;’ exp[o'nzﬂ+§§’(p);-+p(c—l)+z logz],

where 6 = 0 or § = 1 according as z is confined to T, or T,.
Upon observing that when tmag part z° > 0 the function exp miz? is develop-
able asymptotically in the form (56) with ao = a; = as = -.- = 0, it appears



GENERAL INTEGRAL FuNncTION 59

that (58) becomes replaced in the present case by

M p=1 v
F(z) ~2:m_1_r_zpexp[2§(£)z—+£(c— 1) 4 z* logz].
T3P 4 y4

v=1 14

This relation holds true, then, whenever real part z? > 1. In case real part
2P < 1 the equations corresponding to (59) and (60) become respectively

H(z) = —zlplogZ‘r—%)log (— 2)P — ilog(l —%)— Q,(1) + miz?

14

-1
+p2§(£)-i—,+§(c — 1)+ 37 log s + r(3),

F(z) ~mem [zr(;)§+§(c— 1) + 27 log (— z)]-

Finally, in case 2” is real and positive, 1. e., in case ¢ has one of the arguments

we find by reasoning analogous to that at the close of § 24 that S(z) will be given
by (66) and hence we shall have (67) in which 6 = 0.

In summary we arrive then at the following

TaeoreM I1.22  Given the typical integral function F(z) defined in Theorem I
together with the assumption, that p = the integer p.

For values of z of large modulus lying within sectors of the type

_4e+3 4k + 1 k=0123,---

2p T<e<-— 2p T —2r < ¢ < 0; o =argz

we shall then have
RN (z)z_' Lid ]
F(z)~wexp[2§‘ p)7 e D+=lg (-3

¢ being the symbol for the Riemann { function, and c representing Euler’s constand,
while for values of z of large modulus lying within sectors of the type

_4k+1 4k — 1 k=0,1,23, .-

2p T<e< — % T —r < p=0; ¢=argsz
we shall have
2 sin 73? =l (v ) A ]
~ — —_— — — P
F(z) B exp[gt )5t Ce—D+wles].

2 Cf, MaTtson (l. c.), pp. 15-17.
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27. 1t will be observed that the integral function F(z) considered in §§ 2426
is of order > 0. BARNEs® has also considered the corresponding problem for
certain type functions whose order is equal to zero, but we shall confine ourselves
to the case treated above.

AsymproTic DEVELOPMENTS OF FuNcTiIONS DEFINED BY POWER SERIES

28. The results thus far indicated in the present chapter are but indirectly
applicable to the determination of asymptotic developments for functions
defined by power series. This subject, however, is one of evident importance.
We shall now point out a general theorem in this field, resulting from the lemma
of § 24.

TraeoreM III. If the coeffictent g(n) of the power series

(68) 2 g(n)a*;  r = radius of convergence > 0,
=0

may be considered as a function g(w) of the complex variable w = z + 1y and as
such satisfies the following conditions: (a) i single valued and analytic throughout
the finite w plane except for a finite number of singularities situated at the points
w = wy, Wy, - -+, Wy, none of which cotncide with one of the pointsw = 0,1,2,3, - - -,
and (b) 13 such that to an arbitrarily small positive constant e there corresponds a
positive constant K (independent of x and y) such that

g(x % 1)

9(x)
for all values (real) of x and for all positive values of y sufficiently large, then the
function f(z) defined by (68) (|z| < r) will be such that for all values of = lying in
any sector (center at z = 0) that does not include the positive real axis we may write

g(—1) g(=2) g(=3)
(69) R i L

< Kexpey

where rm represents the residue of the function

(70) rg(w)(— )*
sin 7w
at the pornd w = .
In order to prove this theorem we observe that for all values of z except those
real and positive we may at once apply the lemma of § 24 with a taken as an

arbitrarily large negative integer: a = — [, and write

Q) S gt = 5 ga)s" +16) = — v+ ale),

8 See Philosophical Trans., Vol. 199A (1902), pp. 466—468.



Functions DEFINED BY POWER SERIES 61

where ¢,(3) vanishes to as high an order as the (! + 4)th when |z| = ©. Whence
follows the indicated result.
For example, let us consider the function

(72) f@) =32

.=0P - n’

p * integer < 0.

Here we may take

9(“’)=p—w

and the residue of (70) at the pole w = p is readily found to be

Whence, throughout any sector such as indicated in the above theorem we
shall have

= 1 1w
@3) &~ = dnme “ G+ s G+ 22

This result ceases to hold when p = a negative integer since the expression
then has a pole of the second order at w = p. Such cases may, however, be
treated by the same theorem. Thus, in particular, when p = — 1 we obtain
directly

1 —
we B

and hence, instead of (73)

7 : PR A A~
This result may be verified by noting that when p = — 1 the equation (71)
gives

fo =8 4=3

while the power series appearing in (74) converges when |z|> 1 to the value
4 log (1 — 1/3) so that (74) gives the same form for f(z).

29. Generalizations of Theorem II1.—If for a given series (68) the function
g(w) is not single valued throughout the w plane, but contains ¢ branch points
W = Wy, Wy, *--, Wy, conditions (a) and (b) remaining otherwise the same, the
theorem continues true provided that, after rendering g(w) single valued by
means of g cuts extending vertically downwards® to infinity from the points

% Since the series here appearing is convergent for |z| > 1 the symbol ~ may be changed
to =,

# More generally, in any direction tending to infinity in the right half of the plane or vertically
upwards or downwards.
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w = y; (m = 1,2, ---, q) respectively, we subtract from the second member of
(69) the expression

3

m=1

where an represents the loop integral (assumed to exist) of

1 g(w)(— 2)*
2t  sin 7w

taken in the positive sense from the point w = @ — t to the same point after
surrounding the (one) branch point w = #,. This result, in fact, appears
directly upon reference to the demonstration of the theorem.
~ We note that in case the point w = @m coincides with a point of the type
w = w, mentioned in the theorem, the corresponding value of ry, is to be neglected,
the term a., then being evidently the only one of the two to be retained.
A particular type of function f(z) to which Theorem III and these supple-
mentary remarks apply is the following, discussed by BARNES:*
< 2"x(n + 6) 6 = constant + 0 or neg. integer,
H&0 =L 0T 67 5§ = constans
where x(1/z) is regular at the origin. Besides this, BARNES considers the corre-
sponding problem for certain special types of functions for which condition (b)
of Theorem III is not fulfilled. Of these latter may be especially mentioned
the function
< 2 = constant + 0 or neg. inieger,
P 0 = LZaF ot F 1 8= constans

for which it is stated?’ that for all values of z of large modulus we may write

Fo(z; 6) ~ 053, 0) + €5 [a.,+9;+:,_?+ ]

where ¢g(2; 0) represents the loop integral of the function

1 22I'(— )
T 2ri (s 4+ 0)°
taken over the path in the s plane extending from the point 8 = — © +- tmag
part (— ) to the point ¢ = — 6 and return.® The values of aq, @y, a3, - -, are
also given.
This function F,(z; 6) typifies an important class of functions, #z., those
which for an appropriate value of arg z become infinite like e*z* (k = const.)
8 Philosophical Transactions, Vol. 206A (1908), pp. 257, 272, 282.
oL c.,p. 265.
8 BARNES examines in further detail the properties of this loop integral, expressing it in the

form of a series in his final result (p. 265). Cf. also Quarterly Journ. of Math., Vol. 37 (1906), p.
89 et seq; also 1bid., Vol. 38, p. 116 et seq.
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when |z| is large. In this connection the following more general statement
seems probable,? though a rigorous proof of it cannot be supplied by the author
at present.

“If the function g(n) appearing in the coefficients of the power series

__g(n) "

may be considered as a function g(w) of the complex variable w = z 4 7y and
as such satisfies the following two conditions (a) is single valued and analytic
throughout the finite w plane except for a finite number of singularities situated
at the points w = w;, w,, ---, w, (none of which, however, coincide with one
of the points w= 0,1, 2, 3, ---) and (b) is such that there exists a constant
(real or complex) 8 for which the function

I'(

60) = F— s 1)
is developable in the form
- by R Py (o gy ey T vy iy ey g
L. bn + e..(W)

(w+B)(w+B+ D+ - (w+p+n)’

where
1 < <I
l.l'1|m=1me..(w) =0 - 5 Sagw=g3,

then, for all values of z of large modulus we may write
L s by, bs
f@ ~ = Zlfm-l- (=2 b+ +5+ - |
in which r, represents the residue of the function

mg(w)(— 2)*
I'(w+ 1) sin ™
at the point w = w, and in which the coefficients by, by, bs, - - -, are determined
from (75).”30
® From considerations based upon the relation

— I'(— w)g(w)(— 2)*

1 (— 2)vdw +p ( )
I‘(w+k)amrw z"l k = constant = 1,

1 N |

P (;) - polynofmalm;,

where the indicated integration takes place in any closed (infinite) contour embracing the points
w=0123, ...

3 No mention has been made in the present Chapter of a class of power series whose asymp-

totic forms have been studied by Dienes and VaLiroN. For a concise statement of their results

see Theorems I and II in VALIRON’S paper, “Sur le calcul approché de certaines fonctions entidres,”
Bull. de la Soc. Math. de France, Vol. 42 (1914), pp. 262-264.



CHAPTER III
THE ASYMPTOTIC SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS

30. The oldest and most fully developed aspect of the theory of asymptotic
series concerns the so-called ‘“ asymptotic solutions ”’ of linear differential equa-
tions. In the present chapter we shall undertake to give a summary of the
principal results (without proofs) that have been obtained in this field, with
indications as to certain noteworthy questions still remaining unanswered.
Corresponding results and questions for linear difference equations will also be

briefly considered.
Real Variable

31. Confining the attention at first to the case in which the independent
-variable z is real and positive, the investigations referred to may be said to
cluster about the homogeneous linear differential equation

) Y™ + @y + 6@y + -+ + a@y = 0,

wherein the coefficients a,, as, ---, a, are assumed to be developable for large
positive values of z either in convergent or asymptotic series of the form

ar(x)~z'k[ar,0+a'_a;1+g'zz+’+"‘]; r=12.-.,n.

k being zero or some positive integer.! In this equation the point z = o is
in general a so-called “irregular point **? so that the usual ““ normal solutions ”’
about the point z = «, as provided by the well-known theories of Fucas,
come to involve power series in 1/ that are divergent for all values of 2.2 Never-
theless, the same solutions continue to satisfy the equation formally* and it
can be shown that they represent asymptotically, in the precise sense of § 13,
certain actual solutions. In fact, we may begin by citing the following note-
worthy theorem first established rigorously by Horn:®

“If for the equation (1) the roots m,, ms, - - -, m, of the characteristic equa-
tion — 1. e., the algebraic equation

1 The integer k + 1 is termed the rank of (1) at z = «. See for example HorN, *“Gewdhn-
liche Differentialgleichungen belieber Ordnung” (Leipzig, Goschen, 1805), p. 187.

? For an exposition of the definitions and basal theorems in the theory of linear differential
equations, one may consult Prcarp’s “Traité d’Analyse” (1896), Vol. 3, Chap. 11.

3 Cf. P1CcARD, L. c., § 22.

4 Cf. P1carp, l. c., § 23.

8 Cf. Acta Math., Vol. 24 (1901), p. 289.
64
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2 m*+ a1, om™ 1+ -- 4 an0=0,

are distinct from one another, equation (1) possesses n linearly independent
solutions ¥, ¥s, - - -, ¥a valid for large positive values of z which are developable
asymptotically in the forms
L]

2 y,~e""’z"2‘4;;j; r=12---,n,

j=0 T
where f,(z) is a polynomial of degree k + 1 in z, the coefficient of whose highest
power in z is m,/(k + 1), while p, and 4, ; are constants® with 4, o = 1.”7

If in this theorem the restriction be removed that the roots of the charac-
teristic equation be distinct —. e., if multiple roots be present —the theorem
fails and we at once encounter a problem for which no general solution has as
yet been obtained. However, Love® has recently made a noteworthy advance
in this direction, his theorem (which manifestly contains the above as a special
case) being as follows:

If, other conditions remaining as stated above, “ the characteristic equation
has [ roots m,, ma, - - -, mi, occurring respectively ni, ns, - -+, n; times (n, + na
+ --- 4 n; = n) and such that no multiple root of the characteristic equation
is also a root of the equation

3) a1,1m""1+a,.,mﬂ+...+aml=0,

then the equation (1) possesses a fundamental system of solutions y,,, (r = 1, 2,
<o, l;9=1,2, .-+, n,) developable asymptotically in the form

1 @ 4 .
Yrig ~ &k 3 ghraim 3 Bt
=0

j=0 z’

where f,, o(z) is a certain polynomial of degree n.(k + 1) in '™, the quantities
pr.q and A, g, s, ; are determinate constants, and A4,,4,0,0 = 1.”

LovEe has furthermore considered in detail® the equations (1) of the second
and third orders, including the cases in which (3) is satisfied by a multiple root,

¢ The precise values of the coefficients of f,(z) and of the constants p,, 4,,; may be deter-
mined by the method of undetermined coefficients after substituting y, in (1). A similar remark
should be understood with reference to the f,¢(2), pr,q, etc., that follow.

7 Historically, the first form of equation (1) to be studied in this connection was that taken
by PoiNcar# in which ay, as, - - -, as are rational fractions, thus possessing no other singularities
than poles at z = ., See Acta Math., Vol. 8 (1886), pp. 206-344.

8 Cf. Annals of Math., Vol. 15 (1914), p. 155.

* Love does not use, at least directly, the method common to the greater part of Horn’s
work, viz., that of successive approximations, though the latter could doubtless be employed to
the same ends. His method rests rather upon certain general studies of DNt to be found in Vol. 2
(1898) of the Annali di Mat., pp. 297-324, wherein the equation (1) of the nth order is first con-
verted into a VoLTERRA integral equation of the second kind containing n arbitrary functions,
termed ‘““auxiliary functions,” and the latter (equation) solved by the usual process of iteration,
thus yielding forms of solution for the original equation (1). Through the arbitrariness existing
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and has arrived at complete results for these orders.® Thus, for n = 2 we
have the following:!
“In the differential equation

¥ +b@y=0

suppose that b(z) is a real or complex function developable asymptotically for
large real positive values of z in the form

be) ~ [ b+ 24 -],

where k is 0 or a positive integer. Then, for the same values of z equation
possesses two linearly independent solutions y,, a2 such that (a) if by + 0, <. e.,
if the roots m;, ma of the characteristic equation m? 4 by = 0 are distinct, we
may write

y~e"‘"x"[l+A" +---], r=1,2,

where
mz*  a, _axt

Je(z) = EF+1 + A + - 4 arn7;

) if by = 0, by F+ 0 we may write
...)], r=1,2,

A,
_ —zb—lx —nﬂ? . -12‘
fr(z) - k + i + + + * ’

y ~e/v( xPr[l+

where

Lyt ‘,—(B'.

(¢) if £ = by = b, = 0 we may write in general
yr"'x"[l'*'A" + * ']y r= 1)2;

(d) but if p; = p or, in general, if ps — p, is & positive integer we have'?

in the choice of these auxiliary functions, the resulting solutions, though frequently complicated,
are of great flexibility and it thus becomes possible to adapt them to a wide variety of investi-
gations, as DInt himself has abundantly shown in a series of papers in the Annali di Mat. extending
over the years 1898-1910. In the case of studies such as are being considered in the present chap-
ter, the method readily provides actual solutions that are valid for large (positive) values of z
and thus the problem becomes merely that of showing that the auxiliary functions may be chosen
in particular in such a way that these solutions are developable asymptotically in the sense of § 13.

10 Cf. Am. Journ. of Math., Vol. 34 (1914), pp. 165-166.

1t For the sake of completeness the case of unequal roots, though covered by the above
mentioned theorems, is included in the statement.

12 It will be observed that (b), (c) and (d) relate to the cases in which m =m. If in (c)
or (d) the series for b(z) converges for all [z| > R then z = « is a “ regular point ”’ of the differ-
ential equation and hence in the results for y; and y; the sign ~ may be changed to =; |z| > R.
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yx~zﬂ[1+‘4—”+ ]

A
y2~yxlog$+$”[Azo+_"l+ ]

The complete result for the equation of the third order is as follows:
“In the differential equation

¥ + b@)y + c(@)y =0

suppose that b(z) and ¢(z) are real or complex functions developable asymp-
totically when z is large and positive in the forms

ba) ~ 2 bt 2t -,

c(z) ~33"’[00+%+ ],

where k is O or a positive integer, and suppose that b’(z) also has an asymptotic

development. Then for the same values of z the given equation has three linearly

independent solutions yi, ys, ys possessing asymptotic developments as follows:
(a) If the roots m,, ms, m; of the characteristic equation

m3 + bo‘m + Co = 0
are distinct, we may write

z»[+~+]
where

k+1 k
1@ =gt T+ o e,

) If my + ma = m; we may write in general

n~ e/l(!)xm [ 14 ‘_4L1 + . ]

A,,

y'~e,'(x)2:"[ +— + +{( 70+ + )] r=2,3,

. where fi(z) has the same form as in (a) and

$
£i@) = Z‘f;+°";c’r; po 45T r=2s.

(c) But if in (b) ps = ps, or in general if p; — ps is & positive integer, we have
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Arl

y'~efr(z)xﬂr[1+ +...]; r= 1,2,

Ys ~ Y2 log z + e/*(z [A, o+ — A" ves ] ,

where fi(z) and fs(z) have the same form as in (a).
(d) If my = ms = ms and either ¢, £ 0 or by =¢;, =0, ¢2 ¥ 0 we may
write

y,. ~ e!r(z)zﬂr [ 1 + A' 1

et (Bt Bt )

+ = (C.-.o+0”+---)]; r=123,

where
Oy, -ab—:xH" Qr, —ab—le' —137i

(e) If ¢; = 0, by % 0, 1, y2, ¥s have expansions of the same form as in (b).
(f) Itk = by = ¢1 = ca = 0 we may write

4 -
m~wb+ ek R

yz~Ay110gx+a:”[A,, +A-’—'1+ ],

z
¥s ~ By, log® 2 4 2" log = B. 0+&+ ]+:c"'[A;,o+A" ---].”u

While the complete results for the equation (1) of order n = 4 have not as
yet been obtained, a careful examination of those just given for n = 2, 3 throws
light upon what the corresponding forms may be expected to be. Moreover,
in connection with this question the following result should be noted:!4

““ Let 7(x) be one of the system of functions

o L 1 1
2t z(log )"’ =z log z(log log )+’ ’
and put

»>0)

ni(z) = f "r(a:)d:c.

18]t will be observed that (b) and (c) refer to the case m; & ms = m; while (d), (¢) and (f)
refer to the case my = my = m,. If in (f) the series for b(z) and c(z) converge for all |z| > R
then z = « is a regular point of the differential equation and hence in the results for g, s and ys
the ~ may be changed to =; |z| > R.

14 Obtained by Dint for the case in which the roots of the characteristic equation all have the
same real part, and partially obtained by him when this restriction is removed (Annali di Mat.,
Vol. 3 (1899), p. 136. The result has recently been established in its entirety by Love in the
American Journal of Mathematics.
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Suppose now that in the differential equation
@ y™+ [+ @y + e+ @+ - + [+ @)y = 0

the functions a;(z), as(z), - - -, aa(z) together with their 2n — 1 derivatives are
continuous when z is sufficiently large, and suppose that the characteristic
equation

(5) “n+aw"—1+...+an=0

has ! different roots uj, s, - - -, w occurring n,, ns, ---, m; times respectively
(n1+ na+ --- + n; = n) and let n’ be the largest of the numbers ny, n,, - - -, 0.
If one of the functions 7(z) exists such that for sufficiently large values of

(6) Iar(.)(z)lé;%%; r=1’2,"""’; 3=0:1:"':2n_1:

then for the same values of = the equation (4) has n linearly independent solu-
tions y;, x(z) expressible in the form

Yi, k(z) = zb—le“’[l + €, l(z)]; 1= 1’ 2’ ] l; k= 1: 2: RPN (17

where ¢;, »(z) vanishes at infinity to at least as high an order as that of 7,(x),
while further

¥ (@) = 2 e u + Cix, J@)]; ¢=1,2-+,m,
where lim { = 0.”

z=00

It is to be observed that for the special case 7(z) = 1/2* this result relates
to an equation of the form (1) (wherein ¥ = 0), and furnishes the ““ dominant
terms ”’ of developments for the corresponding solutions y; x(z). Doubtless
by a sufficiently critical examination of the form of e; (), these developments
could be identified with asymptotic developments in the precise sense of § 13.
For the type of equation considered, the result is seen to be in every sense general
so far as the possibility of multiple roots in (5) is concerned, except for the
restrictions (6). These latter when interpreted with reference to (1) mean that

) ar,, = 0; r=1,23, .-, n; 8=123,---,2n' — 1

and hence come to impose unfortunate restrictions. However, the result is of
decided value in showing that all further studies upon the problem in hand
may be limited to those cases (assuming multiple roots present in (2)) wherein
(7) are not satisfied.
Complex Variable

32. Passing to the corresponding studies upon (1) when the independent
variable z is allowed to take on complex values, the existence, form and range
of the asymptotic solutions have been completely discussed by BIRKHOFF in
case the coefficients a,(z) (r = 1, 2, - -+, n) are developable in convergent series
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(|z| > R = constant sufficiently large) and under the assumption that the
roots of the characteristic equation (2) are distinct.®® Corresponding results
when multiple roots are present in (2) do not appear to have been thus far ob-
tained.

BIRKHOFF’S essential result may be summarized as follows:

‘“ Representing by mi, ms, ---, m, the n (distinct) roots of (2), let there be
drawn from the origin (z = 0) the N =n(n — 1)(k+ 1) rays (*“critical”
rays) determined by the equation

real part of [(m, — m)z**] =0; s+t

Let the angles which these rays make with the positive real axis in the order
of their increasing magnitude be denoted by 7, 73, - -+, 7» and place 744, = 71
+ 2.

Then, corresponding to the sector 7m = arg * < Tm4+1 there exists a set of
fundamental solutions y. (r =1, 2, ---, n) of (1) developable asymptotically
in the forms (2)’ where f,(z), p. and 4,,; continue to have the meanings there
indicated.

The set of solutions satisfying (2)’ in the sector (7m, Tm+1) differs at most
by one solution from the set satisfying (2)’ in the adjacent sector (Tmy1, Tms+2).”’ 1

Linear Difference Equations
33. If instead of (1) we take for consideration the linear difference equation
®) ye+h+a@y+hb—1)+ a@yE+h—2)+ -+ aa(z)y(x) = 0

wherein the coefficients a,, as, - - -, as are assumed to be developable for large
positive values of z either in convergent series or asymptotically in the forms

8) ar(l')"'x'k[ar.o'i"a'_a;l“"g;_;"'l'“']; r=1,2¢,m,

B Trans. Am. Math. Soc., Vol. 10 (1909), pp. 463—468. BIRKHOFF considers, instead of (1),
the system of n ordinary linear equations of the first order:
d hd .
o)) dz = X %@ G=12-n)

in which for |z] > R we have
aiy (2) = aszt + a¢, V29 + -+ +ai@ + au"*”i-i- e i =1,2,---,n),
the characteristic equation then becoming
lasg — Sl =0; 8; =0 if 43 8;=1 if §=3j.
The equation (1) may be transformed into a system of the form (A) by placing g = 2%y,
ys = z3DRy/ ...y, = 24D in which case we find ¢ = k. Thus, whatever applies to (4)
applies to (1) as a special case with ¢ = k.
The important case in which the coefficients a,(z) of (1) are rational polynomials was dis-
cussed in a series of earlier papers by Horn whose results are summarized by VAN VLECK in the

Boston Colloquium Lectures (1905), pp. 85-92.
16 For the precise nature of this dependence, see BirknOFT, I. c., p. 468.
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k being zero or a positive integer, we have, corresponding to the first result cited
in § 31, the following:
““ If the roots my, ms, - - -, ma of the characteristic equation

9 m* 4 arom™ 4 -+ an0=0

are distinct and no one of them equal to zero, equation (8) possesses n linearly
independent solutions y, ¥, - - -, y» valid for large positive values of  which are
developable asymptotically in the forms
@)’ 4o~ D+ DPmoze 2400, p= 1,2, .0 m,
=0 T

where A4, = 1.7V

In case (9) has multiple roots, or a zero root (as,0 = 0) the principal results
thus far obtained appear to be those of NORLUND who employs asymptotic
“faculty series ” and allows the independent variable z to range over complex
as well as real values. Using his notation and including for the sake of complete-
ness the case of distinct roots, his results are as follows:!®

“ Given the linear difference equation

10) S Pi@ue— 9 = 0,

where the coefficients are faculty series of the form

6y PXQ)

21T @ DE+2)

Pix) = ¢ +
11)

+ a® 4oy
@+ 1)+ 2)(@=+3) ’

all of which converge throughout the right half of the z plane.®® Suppose first
that the roots a,, as, a3, - - -, ax of the characteristic equation
(12) co(o)zk + co(l)zb—l + .-+ co(k) = 0; co(o) + 0’ cn(k) +0

aredistinct. Then there exist & solutions u;, us, - - -, us of (10) such that through-
out the sector — (r/2) + ¢ < arg z < (x/2) — € (e arbitrarily small and > 0)
we have

(13)

1=01,2---,k

. Te+1)
Uj ~ Gy I‘—(x — i+ 1) ¢i(@),

where p; is a constant and ¢;(z) a faculty series of the form indicated in (11).

17 Cf. HorN, Journ. fur Math., Vol. 138 (1910), p. 159.

18 “ Kongelige Danske Videnskabernes Selskabs Skrifter’’ (Mém. de I’Acad. Roy. des Sciences
et des Lettres de Denmark), Vol. 6 (1911), pp. 317-318. It would appear that the proofs of the
results here stated have not as yet been published except in part.

19 A very broad class of series of the form (11) have this property. See for example N1eLSON,
‘“Handbuch der Theorie der Gammafunction,” Leipzig (Teubner), 1906, § 96.
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In case (12) has multiple roots and a;* is an n-fold root, N 6RLUND distinguishes
two cases:
(1) ajis at the same time an (n — p)-fold root of the equations

&
Zc,,("z""“=0; =12 --,n—1.
=0
(2) These conditions are not fulfilled.
In (2) no asymptotic development exists of the form (13).
In (1) there exist n linearly independent solutions u,(z); s=1,2, -+, n
such that when — (7/2) + ¢ < arg z < (r/2) — € we have

Uy ~ ajz@o(z); s=1, 2: 3’ ARPE ()

where
Iz +1) 9 Tet+l)
®,(z) = @ol) Tz—p.+1) + @i(@) 3. T(x—p.+1) to
o T'z+1)
+ ¢n(x)a ST — p.+1)°

the expressions ¢, ¢1, * -+, ¢, being developments of the form (11).
If some of the roots of (12) are zero or infinite, it is necessary in order to obtain
a system of fundamental solutions to use a series of substitutions of the form

u(e) = T@Pu* (@) = T(E)ut(z)

and determine u, so that the difference equation in u*~(z) shall have a charac-
teristic equation containing at least one root which is finite and different from
zero. It is always possible to determine in but one way a series of numbers
M1, M2, ***, pm Such that the total number of roots which are finite and different
from zero in the corresponding characteristic equations thus obtained is exactly
the order k of (10).2° If, whenever a multiple root occurs in one of these charac-
teristic equations, the corresponding conditions under (1) are satisfied, then
there exists a system of fundamental solutions of (10) each of which is asymp-
totically represented within the sector — (x/2) + e < argz < (x/2) — e by a
series of the form
I (z)a;*®.(z).

Exceptions occur, however, when some of the numbers u, are not integers, since
the coefficients in the above-mentioned difference equations are then no longer
developable in faculty series of the form (11). For example, suppose u, = a
rational fraction p/g. We may then put z = p3, u(zr) = »(3) and derive from
(10) a difference equation for v(z), thus demonstrating the existence of solutions
expressible asymptotically in the forms

p“,(f)a,,,,@.(f),
y4 Y4

30 NSRLUND, Acla Math., Vol. 34 (1911), p. 16.
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Important studies of (8) when z is complex and under the assumption that
the roots of (9) are different from zero and distinct and that the coefficient§
a.(x) are rational fractions developable in the forms (8)’ (wherein the series would
then converge for all |z| sufficiently large), have been made also by GALBRUNZ
and by BIrkHOFF,2 with the essential result that there exists a system of funda-
mental solutions G(z) = y1, ¥z, ¥s, -, Y developable asymptotically in the
respective forms (9)’ throughout the right half of the z plane, and at the same
time there exists a second system H(z) = yi, ¥3, * - -, ¥» of fundamental solutions
developable likewise in the forms (9)’ but throughout the left half of the plane.
Moreover, the elements of the system G(z) when considered in the left half
plane possess asymptotic developments other than (9)’ whose forms change as
arg  passes through any one of certain radial directions (““secondary critical
rays ”’) lying in the second and third quadrants,® while similarly the elements
of H(z) when considered in the right half plane are developable asymptotically
in forms differing from (9)’ and changing as arg = passes through certain radial
directions situated in the first and fourth quadrants.

Returning again to the case in which x is regarded as real and positive and
assuming further that it is confined to integral values, we have, corresponding to
the last result stated in § 31, the following:2¢

““Let 7(x) be one of the system of functions (3)’ and put

71(z) = Z 7(21).

n=z+1

Suppose now there is given a difference equation
(a0 + @y + n) + a1 + ax@ly(e+n— 1)+ -+

(14)
+ [ax + an(@)]y(z) = 0,

whose characteristic equation
g™+ ap™ + -+ +aa=0

has ! different roots uj, ps, ° -+, us occurring n;, ns, +--, n; times respectively
(ny + na + - -+ + n; = n) and let #’ be the largest of the numbers n,, 73, - - -, n;.

1 Acla Math., Vol. 36 (1913), pp. 1-68; also Compt. Rend., Vol. 148 (1909), pp. 905-907.

) 8 Trans. Am. Math. Soc., Vol. 12 (1911), pp. 243-284. As in his studies on linear differential
equations (cf. footnote, p. —), BIRKHOFF considers a system of linear difference equations of the

first order. In order to identify the forms (9)’ with those occurring in his results, it suffices to

observe that

Te+1) ozt (o + 2+ 240 ).

See for example HorN, Math. Annalen, Vol. 53 (1800), p. 191.

2 For the precise statement, see BIRKHOFF, . c., p. 277-278. See also p. 279, lines 1-7.

% Cf. Love in Am. Journ. Math. Obtained earlier by Forb in case all roots of the charac-
teristic equation have the same modulus (Annali di Mat., Vol. 13 (1907), p. 328).
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If a function 7(z) exists such that for sufficiently large values of =

lar(z)l_;;;g_—,, r=012 ---,m,

then for the same values of = the equation (14) has # linearly independent solu-
tions y;, x(z) expressible asymptotically in. the forms

Y, k(x) ~ g1 iz[1+ €, k(x)]; i = 1,2, ct Y l; k= 1,2, ..., n .
where ¢;, » vanishes at infinity to at least as high an order as that of 7,(z).”

Summary

34. A comparison of the results noted in §§ 30-33 would indicate that the
study of the asymptotic solutions of either the differential equation (1) or the
difference equation (8) is already in- a fairly satisfactory state provided the
assumption be made throughout that the roots of the characteristic equation
are distinct, but much remains to be done in those cases where multiple roots
are present. In fact, it is only for the equation (1) of the special orders n = 2
or n = 3 that we find what could be described as a complete discussion, and
even this has thus far been carried out only for the real variable z.



CHAPTER 1V
ELEMENTARY STUDIES ON THE SUMMABILITY OF SERIES
35. Introduction.—The divergent series
(1) 1—141—141—1+4 ---

was regarded by EULER! as having the sum % on the ground that the expression
1/(1 4+ z) gives rise by division to the series

09 l—z+ 22—+t —a5+ .-,
so that in particular (placing z = 1) one must have
(3) j=1—-14+1—-141—1+4---

In general, the “sum ”’ of a series (convergent or divergent) was taken to be the
number most naturally associated with it from the standpoint of mathematical
operations. This conception, however, naturall& led to inconsistency. Thus,
by developing the expression (1 — z")/(1 — 2™) into the form

(4) l=—z*t+a2”—2a*m o™ — ...,
and noting the result when z = 1 we obtain for the series (1) the sum n/m instead
of 4.

The notion of sum as thus loosely conceived was eventually replaced by the
exact definition of ABEL and CavucHY according to which the sum of any series

®) Go+a1+astas+ .-
is taken to mean the limit
(6) 8=1i=tg(ao+a1+az+---+an)-

“Series for which this limit exists were termed convergent, all others divergent.

Of the two classes of series thus arising, the former occupied almost exclusively
the attention of the immediate successors of ABEL and CAUCHY and to such an
extent that all divergent series came to be regarded as of questionable value and
indeed of doubtful significance. It is a noteworthy fact, however, that ABEL
and CaucHY themselves never ceased to regard divergent series with much
interest and with the belief that such series should by no means be banished from
analysis for the mere reason that they fell outside the pale of the particular

1 For a more extended historical account, see BOREL, ““Legons sur les Séries Divergentes’

(Paris, 1901), Introduction.
75
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definition (6). Each felt on the other hand that the subject presented-a rich
field for further research.

Only since the time of WEIERSTRASS has the question thus arising —wz.,
whether any numerical significance can properly be attached to a divergent series
—been scientifically attacked and in large measure answered. The avenue of
approach has been chiefly through the so-called boundary-value (Grenzwert)
problem in the theory of analytic functions? Thus, FrRoBENIUS?® showed in the

first place that if
) 2 Gaz"
n=0
be any power series having a radius of convergence equal to 1, then
S e ot at st -4
® Jim, 2 ona® = lim n 1 ‘

where 8, = ao+ a1+ as+ -+ + a,. This was shown to be true, at least,
whenever the limit indicated on the right exists. Now, the first member of (8)
is naturally associated with the series (in general divergent)

® | 2

so that it becomes natural to associate with the latter the sum
_poSotat st -+

(10) 8= 'h=n: nt1 ,

whenever this limit exists. Formula (10), regarded as & general formula for
defining the sum of any given divergent series (9), finds additional justification
in the demonstrable fact that for any convergent series (9) the sum as defined by
either (6) or (10) is the same—. e., formula (10) is consistent. Moreover, this
selection for s is seen to bear an interesting relation to the early statement of
EULER noted above respecting the particular series (1), since, when applied to (1),
it gives at once ¢ = }.

In the present chapter certain general studies are first undertaken (§§ 36-40)
upon a few of the well-known, standard definitions for the “sum ” of a diver-
gent series. The definitions selected (which include (10) as a special case)
are subjected in turn to a number of tests which it is believed any such definition
may well be asked to satisfy, and the results attained are summarized in § 41.

3 For a description of this problem see JAERAUS, ‘“Das Verhalten der Potensgreihen auf dem
Konvergenzkreise historisch-kritisch dargestellt,’” Programm des Kgl. humanist. Gymnasiums
Ludwigshafen a. Rhein (1901), pp. 1-56. See also KNoPP, “Grenswerte von Reihen bei der
Anniiherung an die Konvergenzgrenze,” Dissertation (Berlin, 1907).

8 Journ. fir Math., Vol. 89 (1880), p. 262.

o W

—



GENERALITIES 77

The underlying principles guiding the development of these §§ are stated in
the Preface and hence need not be repeated here.

In the latter part of the chapter the essential properties of ‘‘ absolutely
summable ”’ series are considered (§ 42) and this is followed by a few supple-
mentary theorems and remarks on the theory of summability in general, proofs
being suppressed when reference can be readily made to them elsewhere.

36. Definitions of Sum.—Let any given series (convergent or divergent) be
represented by

(11) 2 Un

»n=0

and let us place

80 = 2 Un.

If (11) is convergent let its sum be indicated by S, if divergent let the sum as-
signed to it by whatever manner be indicated by s.
The definitions for s to which we shall confine our attention* are as follows:

(r)
M 8= li_m%ﬁi r = fixed integer = 0 (CESARO),’
where
8 = g, + rs.._l-i-r(r;!- 1).9,._,-{- cee +'("+ 1) - 'ng"'*' n— 1)80’
(12)

(r+1(r+2)--- (r+n).

(N =
D, nl!

Under (I) is thus included as a special case corresponding to r = 1 the definition
(10). The least value of r for which the second member of (I) exists is called the
degree of indeterminacy of the series (11).

¢ We have confined the attention to what may be called the older and best known forms of
definition, (I) and (II) being connected with the early studies of HSLDER and CESARO upon the
boundary value (Grenzwert) problem for functions defined by power series (see § 35), while the
remainder, especially (III) and (IV), are connected with the independent and now classical
studies of BorEL upon divergent series. A form of definition prominent in the more recent
literature, especially in England, is that of Rixsz (Compt. Rend., July, 1909):

n—1 v

8= lim ) u, 1-2
n=e0 v=0

r

); r = integer = 0.

There should be mentioned also the following definition of DE LA VALLER PoussiN (Bulletins de
la classe des Sciences de I’ Académie Royale de Belgique, 1908, pp. 193-254):

-1 - nn—1):--(n—k+1)
o= lim (wt X S T G R )
For a general study of poesible forms of definition, see SILVERMAN'S Thegis “ On the definition of the
sum of a divergent series” in the scientific publications of the University of Missouri for April,
1913, pp. 1-96.

§ Bulletin des Sciences Math. (2), Vol. 14 (1890), p. 119. CuAPMAN has extended the defini~
tion to include fractional values of r (Proc. London Math. Soc., Vol. 9 (1911), pp. 369—409).
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In s = liln 3.;  r = fized integer =0 (HOLDER),?
where
f 3n(0) = 8ny
1
3,® = T (3@ + 8,9 + ++ . + 5,@),
) 1
8, = | (30D 4 8,0 4 ... 45, M),
: 1
L 8”(') = " + 1 (80('_1) + 81('_1) + cee +8ﬂ(’_l)).
I1I) 8= lim ¢*s(a) (BOREL),”
a=+®

where #(c) is defined by the following series (assumed convergent for all values
of a)

a3) s(e) = ;:ﬁ .
aw) .= f "~ u(a)da (BomEL)

where u(a) is defined by the following series (assumed convergent for all values
of a) ' .

(14) u(a) = H:‘-‘—';aﬂ. |

4% 8= f e *uy(a)da;  p = fixed integer = 1,
0

where

Up(a) = o+ ur+ «++ 4+ up—y) + (Up + Upp1 + <+ + wp1)a
+ (gt -+ + upa+ oo

(VI) o= Uyrde
0
where
(15) Upl@) = 297 & = fized integer = 1.

Zmp) 1’

37. Consistency of the Above Definitions.—It is at once to be assumed that
any tenable definition of sum for divergent series must be such that in the case

¢ Math. Annalen, Vol. 20 (1882), pp. 535-549.

7 Cf. “Legons,” p. 97.

8 Cf. “Lecons,” p. 98. :

® Due to LERoY. Cf. Annales de la Faculié des Sciences de Toulouse (2), Vol. 2 (1902), p. 217.
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of a convergent series it gives 8 = S. This property of a definition is called its
consistency.l® We proceed to establish the consistency of all the above definitions
by a uniform method based upon the following general lemma in the theory of
limits.!

Lemma.—Let 8o, 81, 82, -+ -, s, - - - be a sequence of quantities (real or com-
plex) such that lim s, = [ and let a¢‘®, a,'P, ay®, .- -, a,?, ... be a sequence

of positive quan;ities (weights) dependent upon a parameter p (independent
of n). Also let it be supposed that the expression

2 aaPg,
Sp = 2=:
Z an(P)

»n=0

has a meaning for every value of p in a given sequence P of positive elements
which increase indefinitely to 4 . If, then, p be allowed to increase in-
definitely ranging over the values in P we shall have lim S, = [ provided that

=+
i a,®
(4) lim *3——=0,
p=tw é P

where m is any fixed positive integer (independent of p and n).
Proof —We have by hypothesis 8, = I 4+ €,; lim ¢, = 0 and it suffices to

show that lim D, = 0, where =
p=w
E an(p)a”
D,==—-—1
L
By writing

© ¢ " L]
20 =2 aPa+ X a. s,

n=0 n=0 n=m+41

and then placing 8, = [ 4 ¢, in the last term here appearing we obtain

£ pat 5 e

n=m+1
00
Z RO
n=0 .

10 Cf. BroMwicH, “Infinite Series” (London, 1908), § 100.

1 Cf. Forp, American Journ. of Math., Vol. 32 (1910), p. 320. As here generalized, the
lemma was first obtained and applied to the discussions of the present chapter by MENDENHALL
in his thesis entitled “On the Characteristic Properties of Sum-Formulse in the Theory of Divergent
Series,” University of Michigan, 1911.

D,=
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Whence, if we indicate by gm & positive quantity such that g =|s:|; ¢ = 0,
1,2, .-, m, we may write

” 0
2a.P Y |en]|an®

1D5] = (gm + )T+ =35 :
Zoa"m Z_%a,.(’)

This relation holds good for any preassigned value of p belonging to P and
for any preassigned arbitrarily large positive integral value of m. The same
having been once established, let us now choose an arbitrarily small positive
quantity ¢ and then take m so large that |e|< en=m+1, m+2, ---.
We may then write

L] L)
> Ie..la.."”<e[za.."”— Ean(p)].
n=m+1 n=0 =0

Whence,
Z PR Z a,®
Dy < (gm+|ID—+ |1 -2 ,
E an® Z an
n=0 n=0

from which the desired result follows as soon as we introduce the hypothesis (4).

38. We may now easily show the consistency of definition (I). For this
purpose let us take P in the lemma of § 37 as the sequence of positive integers
0,123, -, and let a,? be defined as follows:

o D Gt p—n—1)
(» — n)!
a»(P):]_ when n = p; a”(P)=O when ">p.

Then S, = S,?/D,") where S, and D, are given by (12). Condition
(4) of the lemma is satisfied since

when n < p;

lim =l e D G D)
= 'E’a"(p) P
- 1 r rp ee e
ii".‘.[r+p+<r+p)(r+p—1)+
pp2eshoeomty ],
r+pr+p—1) - (r+p—m) )
Thus we have the desired result:
lim S, = lim s, = S,
p=w n=w

provided the latter limit exists, <. e., when (11) is convergent.
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The consistency of (IT) follows directly from that of (I) if we make use of
the following established result: “ If the limit s defined by (II) exists for a
given value of r then the limit s defined by (I) exists for the same value of r, and
conversely. Moreover, the two limits ¢ are the same.” In view of this result
it appears that formule (I) and (IT) are coextensive both in applicability and
in the values of & which they associate with a given series (convergent or di-
vergent). As the proof of the indicated result is lengthy, it will be omitted here.2

To show the consistency of (III), let P be taken as the continuous domain
P = 0 and let a,® = p*/nl. Then

80+81P+32§p‘:+
8y = ~ = ¢ ?s(p).
1+p+ ﬁ-i' o
Condition (4) is satisfied since
T Y ol
(16) }:1:3 ’..Z:,m!’ 0.
Thus the lemma yields the desired result:
an lim ¢~?s(p) = lim ¢*s(a) = lim s, = 8.
r=n a=e® n=e0

In considering the consistency of (IV), we first note that when (11) is con-
vergent, lim u, = 0. Whence, if we apply the lemma of § 37 with s, = u, and

a,? = p*[nl, noting also relation (16), we obtain
(18) lim e~?u(p) = h_m e u(a) = li_m up = 0,

p=o

where u(a) has the meaning given in (14).
Now, from equation (17) together with [¢™*s(ar)].=, = %o, We may write

S—u= j‘:-%[c"a(a)]da.
But

% [(%s(a)] = 67%[s' (@) — s(a)],
where

d%"("‘) =¢'(a) =8+ sa+ a;%'i' *e.

Whence, if we note that

d%u(a) = u'(a) = 8'(c) — 8(e) = u; + wex + “'g"!"‘ oo,

13 S8ee Forb, . c., pp. 316-326. Also ScENEE, Math. Annalen, Vol. 67 (1909), pp. 110-125.
In view of this result we shall omit the detailed discussion of (II) throughout the present chapter,
all statements respecting it being identical with those obtained for (I).
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we have

(19) S—u= f ) v’ (a)do.

Whence also, upon integrating by parts,

§— o= [e“[u’(a)da]:+ fd"[[u’(a)da]da
= [e“{u(a) — U} ]:+ j;-e"‘{u(a) — uo}da.

Introducing (18) together with
Up = f euoda
(]

we reach the desired relation:

(20) f i e u(a)da = 8.

Definition (V) is at once seen to be consistent, for when (11) converges to S
so also does the series

(ot ur+ «-- + up1) + (up+ Uppr + ¢ o + ugp)
+ (uap + uappr+ -+ + usp-r) + -+,
and by applying (IV) to this series we obtain the desired result:

j: ~up(@)da = .

Likewise, the consistency of (VI) may be shown by use of (20) for it is merely
the application of this equation to the series

U+ 0+ 0+ -+ 04+ u+ 0+ 0+ - +u 04 o,

wherein p — 1 zeros are inserted between each term and the preceding term
in (11).

39. The- Boundary Value Condition.—It is well known that two definitions
of sum, both “ consistent ”’ (§ 37), do not necessarily give the same sum to a
given divergent series. In other words, consistency alone is not an adequate
principle upon which to base a scientific theory of summation because it does
not insure uniqueness of sum.* A theory free from this objection may be

13 See remarks in Preface. It would appear that many of the formulae for sum suggested
within recent years have been obtained from considerations quite regardless of the question of
uniqueness,
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attained if (having demanded consistency) we confine the attention to those
series (11) for which the corresponding power series!*

@1) - @) = 2 unz®

has a radius of convergence equal to 1 and then agree to retain those definitions
of sum for which

(B) s = lim f(z).

This procedure is in line with the historical genesis of the theory of summability
and allows the theory a well-defined usefulness in the study of analytic functions.!®
Indeed, if a general, self-consistent theory is to be formulated, it would seem that
it should contain (B), or an equivalent condition, though such a condition
evidently tends to limit the immediate range of applicability of the theory to a
particular class of series (11) (cf. Preface).

Having assumed, then, that the series (11) is such that the power series (21)
has a radius of convergence equal to 1, we shall undertake to determine in the
present § those definitions of sum which satisfy (B). Definitions having this
property we shall speak of as satisfying the boundary value condition.

We begin by showing that definition (I) satisfies (B), <. e.,

(22) lim 2 unz® = lim 8,/D,®,
z=1—0 n=0 n=cw0

whenever the latter limit exists. This may be done as follows by the aid of the
lemma of § 37.

Let the 8, of the lemma be taken as S,”/D,. Then placez=1—1/p
so that as z ranges from a to 1 (0 < @ < z) the quantity p ranges from 1/(1 — a)
to + «; also take a,® = D,"(1 — 1/p)". The expression S, of the lemma
then becomes

Sao(1-2) Esor a-geTues

Sp = = = = n=0 = Unz"
O Iy~ ¢ =gy T g

Dn(r) (1 — _) ”(r) n

% ) D0z

1 Tt is to be observed that this series is formed by supplying the successive powers of z into
(11) beginning with z° thus excluding, for example, the series (4) in connection with the study
of (1). This choice of f(z), though arbitrary, is evidently the most natural and the one most
likely to result in a theory of summability having useful supplemental relations to the boundary-
value problem.

1 Some sum-formulae, such as (IV), § 36, not only satisfy (B) when applied to series (11)
for which (21) has a radius of convergence equal to 1, but they have the further property that
they preserve a meaning in certain regions in which |z] > 1 and in these regions furnish the
analytical continuation of (21) (cf. § 44).
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so that
lim S; = lim Zu,.:c

p= z=1-0 n=0

Let us now confine ourselves, as may be done without loss of generality, to
values of p pertaining to the sequence P =1, 2, 3, ---. Condition (4) of the
lemma is now satisfied, since

,l,i::[gp"(')(l—%)" gDﬂ(r)(l—%)"]
1_'_(r+ 1)( ) (r+ 1)+ 2)(1__1_)’_’_“_
4

= lim z 7 ’
,=..1+(+1)( p)+(_f:r_22<Tr+_2)( ;1,)’+...

which expression is evidently equal to zero since the denominator has a meaning
for all p > 0 but becomes infinite with p, while the numerator remains finite as
p= .

Applying the lemma, we may therefore write (22) as desired.

We turn next to definition (IIT) and shall show that (B) is again satisfied, <. e.,

(23) lim iu,.x" = lim e s(a),

z=1—-0n=0 a=w®
whenever the latter expression has a meaning.
For this purpose we first note that for any series (11) (convergent or di-
vergent) for which the second member of (2§) exists we have in the notation of
§ 36

(24) da["’ s(a)] = e*[s'(a) — s(@)] = e™u'(a);  [€7°8(a)]emo = o

and hence
(25) li_r& es(a) = ug + j‘: %[e“s(a)]da = uo+ f e (a)da.

Conversely, it appears from the same relations (24) that for any series (11)
for which the last member of (25) exists, the second member of (23) exists also
and we have relation (25).

This premised, let us return to the series (21). Since this series is convergent
when |z|< 1 it follows from the consistency of definition (III) that when
0<z<1

> unz™ = lim 68, (a),

n=0 a=®
where s_(a) represents the function s(a) corresponding to the series (21). Whence,
upon applying (25), we have also
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Py @ L] , , a
(26) Zou,.:c" = uo + A e/ (ax)da; u'(azx) = %a u(azx).

Assuming for the moment that the integral here appearing converges uniformly
for all values of z in the interval ¢ < 2 < 1; @ > 0 we now have, using (25),

lim X usz™ = o+ | ew'()da = lim e~s(c),
z=1-0n=0 0 a=00
thus reaching the desired relation (23).
That the integral in (26) converges uniformly for values of z in the interval
a < z < 1 may be established as follows: Place az = y and subsequently replace
z by 1/(1 4+ 6). The integral under consideration thus takes the form

(27) 1406 j«: i e v/ (y)dy,

so that it now suffices to show that (27) converges uniformly for all values of ¢
in the interval 0 < 8 < b; b = (1 — a)/a.
Now, the integral

(28) [ i

converges, as appears from (25), when we make use of our hypothesis that the
second member of (23) exists. Moreover, the expression ¢~% is positive and
steadily decreasing as y increases and it becomes equal to 1 for all values of 8
when y = 0. We have therefore but to apply Abel’s test!® for the uniform
convergence of definite integrals to reach the desired result concerning (27).

We proceed to show that definition (IV) also satisfies condition (B), <. e.,

(29) lim iu,.x" = f ) e u(a)da,

z=1—-0 n=0

whenever the latter expression has a meaning.
From the consistency of (IV) we have in the first place

lim 3wzt = lim [ e ulaz)des
r=1-0n=0 x=1-04¢/0
so that it suffices for our purpose to prove that
(30) lim eu(ax)da = f eu(a)da.
0

xz=1-04¢/0

16 Cf. BRoMwiIcH, l. ¢., § 171 (2).
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Placing ax = y and subsequently replacing = by 1/(1 4 6),!” the integral
in the first member of (30) takes the form

1406 f e %evu(y)dy
(1} -
and we may now show by applying Abel’s test, as in the discussion of (III), that
this integral converges uniformly for all values of 6 in the interval 0 < 6 < b;
b > 0, with which the proof of (29) becomes complete.
Definition (V) does not in general satisfy condition (B), as appears from an
example. Thus, let the series (21) be ’

1 +x_§(_ 1)"1"
and take p = 2. Then uy(a) = 0 and hence s, as given by (V), is equai to

zero. But,

lim i(— 1)rzn = 1_:_—1= .

x=1—0 n=0

That definition (VI) satisfies condition (B) may be readily inferred from
reasoning similar to that followed in connection with (IV). Thus, from the
consistency of the definition we have

(31) lim Zu,.:c" = llm Uy, ;(a)da,
(1)

x=1-0n=0
where

U, = SEEL

Upon placing # = 2? the second member of (31) takes the form
(32) lim “‘Up(az)da,
s=1-0

where U, is defined by (15). Now place az = y and subsequently replace z by
1/(1 4+ 6). Expression (32) then takes the form

(33) lim (1+ 6) [ erenv,aay.
=0 (]
Since the integral
[ v,y
0
has a meaning by hypothesis, we may show by means of Abel’s test, as in con-
nection with (IV), that the integral in (33) is uniformly convergent for all values

of 0 in the interval 0 < 6 < b, with which the proof is at once completed.
17 Cf. BroMwics, l. c., p. 121,

U,
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40. Fundamental Operations.—Besides being consistent and satisfying the
boundary value condition (B),® it is evidently desirable that the sum assigned
to a numerical divergent series (11) shall, at least so far as possible, be one for
which the usual operations applicable to convergent series are preserved. The
operations of this type which we shall consider are the following:

(C) If s represents the sum of the divergent series (11) by a given definition,
then the series

(34) 2 un; k= positive integer

shall have a sum s® by the same definition such that
(35) #® =5 — (uo+wm+ -+ + up).

Conversely, if the series (34) has a sum s® by a given definition then the series
(11) shall likewise have a sum ¢ by the same definition and relation (35) shall
exist.

(D) If with a given definition of sum, the two divergent series:

(36) S o

n=0

have respectively the sums s,, 8, then the series
2 (tn £ 1)
._=o

shall possess by the same definition the sum 8, =+ s,.
(E) With the hypotheses stated in (D) the series

@37 20 Wny

where
Wn = Uglp + UrBn—1+ *** + Un-101 + UnDo

shall have the sum s;8; (at least after certain additional conditions have been
placed upon u, and v, analogous to those imposed when two convergent series are
multiplied together).

We begin by showing that definition (I) satisfies condition (C). For this it
evidently suffices to suppose k = 1, since a repetition of the reasoning leads
from this to the general result (35).

18 For reasons stated at tlie beginning of § 39 we shall continue throughout the present § to
regard the given series (11) as belonging to the class for which the corresponding power series
(21) has a radius of convergence equal to 1. This hypothesis, however, plays no part in the
deductions about to be made.



88 STUDIES ON SUMMABILITY

Placing

Sn=Ut U+ -+ up,
(38)

on=wm+ U+ - + Unp1,

18, = 8”_*_”"_1_'_'(';; 1)8»-2+ +r(r+ 1) --;§r+n— 1)80’
2Sn(')=0'n+r¢7n—1+r(r2—-*l-1)0'"_2+---+r(r+1)..-n§r+n—l)a’o’

(r+1Dr+2)---(r+mn)

(r) —
D, n!

we are to show, then, that if the limit
8 = lim S, /D,.(')

exists so also does the limit
8 = lim 2Sn(')/ Dn(')

and that 8, = ug + 8;, with the corresponding converse statement.
Since 8p41 = %o + o we have

1841 = cuo + o0 + 1001 + r(r;; 1) Ona+ ++° +

? where
[ c=1+r+’_‘§.r_2-*___ll)+...+f(f+1)..;tgr+n_l)

Whence,

et - (rtn—1)

nl 0y

= Dn (').

8011? _ Da1®@ 180 @ "o+ P
D, = D, D,,® T D,

The desired result (both direct and converse) now follows upon noting that

-y D. n+l(')
lim— = 1.
n=o Dn(')

As regards definition (III), it appears from an example that this does not
always satisfy (C). Thus, consider the special series (11) for which uo, uy, us, - - -
are so determined that

2
sin (6%) = %o+ (uo + w)a + (wo+ w1 + u’)g—l-l_

For this series we have

a=0w a=w

. . . d . .
s=lime sin(e?) =0; sV =Ilme™ [de sin (e*) — uoe“] = lim cos (&%) —uy,
a=0w
so that although s exists, the same is not true of s®.

P N
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In this connection we may, however, establish the following noteworthy
result:

“If the series
(39) Zun; P=0,1:2:3:"':k

n=p

are each summable by (III) to the respective values s, s®, §@, ... §® then
relation (35) is satisfied.”

In fact, with s, and o, defined as in (38) and with

a?
s(a) = ao+81a+82m+ Ty

o?
ol@) = oo+ oat+ g+ -,
we have, since 8p41 = % + 0o,

(@) = wt (ot ovat Gat o)yt o = et + et eyt |.

Or, since on = Opp1 — Unts,

3(“) = upe* 4 [(0'1— ug)a + (o9 — ua)gz-z-*- ].

Whence also
es(a) = up+ e %c(a) — e*u'(a),

where u(a) is determined from (14). It therefore remains but to show that
lim ¢e*u’(a) = 0, in order to prove the indicated statement for the case in which
k=1.

Now, having assumed that both lim ¢™*s(a) and lim e™o(a) exist, it follows
from the last equation that lim e™*u’(a) exists also. Moreover, we have (cf. (25))

(40) lim e™s(a) = uo + f v’ (a)da
a=® 0
so that the only possible value of lim e~*u’(a) is zero.!®

Repetition of tM® reasoning now leads to the more general result as stated
above.

Turning to definition (IV), it again appears that a series (11) which is sum-
mable by this definition may not satisfy (C), but that the following result may
be established :2°

“If the series (39) are summable by (IV) to the respective values s, s,
8@, ... s® then relation (35) is satisfied.”

19 It may be observed that the existence of the integral in (40) does not suffice to establish
the equation lim e=*u'(a) = 0 (cf. BRoMwichH, I. c., p. 278).

20 Cf. HarDY, ‘““Researches in the Theory of Divergent Series, etc.,” Quarterly Journ. of
Math., Vol. 35 (1904), p. 30.
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In order to see the truth of this statement for the case in which k = 1 we
first note that by an integration by parts we obtain

8= jom e u(a)da = [— e_‘u(a)]

(a1
+ [ e = [ ru@ [+ 0.

From this relation combined with the assumed existence of s and s it follows
that lim e u(a) = 0 so that we have as desired s = 8 — uo. In order to
prove the more general case we have evidently but to repeat the same reasoning
k times.

Definition (V) does not always satisfy condition (C) since, as we have just
shown, it does not do so for the special case in which p = 1. Likewise, the
same is true of definition (VI) (which reduces to (IV) when p = 1), but we here
have an alternative result similar to that indicated above.

We turn then to condition (D). This is evidently satisfied by two series
summable by any one of the definitions of § 36 and, therefore, needs no further
comment.

As regards condition (E), it is obviously necessary to impose further condi-
tions than that of the mere summability of the two series (36) in order that (E)
be satisfied, at least in general, since even in the case of two convergent series
such supplementary conditions are required. We here have, however, the
following noteworthy result of Cesdro relative to series (36) summable by (I):

““ The product series (37) of two series (36) whose degrees of indeterminacy
(§ 36) are respectively r and s is summable and has a degree of indeterminacy no
greater than r 4 ¢ 4 1.”%

Conditions under which condition (E) will be satisfied by definition (IV) will
be considered in § 44.

41. Summary of Results.—The principal results of §§ 35-40 may be sum-
marized into the following statement:

Let

(42) 2 tn
n=0
be any divergent series such that the corresponding power series

S

21 We omit the proof of this well-known result. The same may be supplied from BrRoMwiCH,
l.c, §125. For Cesiro’s original proof see Bulletin des Sciences Math., Vol. 14 (1890), pp. 118,
ete.
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has a radius of convergence equal to 1.  Also, let (1), (IT), (III), (IV), (V) and (VI)
represent the six definitions for sum indicated in § 36.

If, then, we represent by (A) the condition of consistency (§ 37), by (B) the
bounidary value condition (§ 39) and by (C), (D) and (E) the conditions of § 40
carried over from the theory of convergent series, the relation of the various definitions
to these conditions appears in the following table wherein the » when placed in any
square indicates that the corresponding definition and condition are compatible:

/A 1

Moreover, the squares corresponding to (111, C), (IV, C) and (VI, C) may also
receive the % provided’one substitutes for (C) the following slightly more restrictive
condition:

(C)' If the series

Eun; P=0,1,2:3:"'»k
n=p

are each summable in accordance with a given definition of sum to the respective values

” 8(1)’ ’(2), ’(3)’ ---’ s(k)
then
s® =8 — (uo+ ur + « - + wa).

42. Absolutely Summable Series.—A noteworthy class of divergent series (11)
for which conditions (4), (B), (C), (D), (E), of § 41 are all satisfied when we adopt
the definition (IV) of sum, has been pointed out by BoREL and made the object
of especial study throughout his investigations.2? Such series are called abso-
lutely summable and are defined from the fact that not only the integral

43) 1= [ e u)de
(\}
is supposed to exist, but also each of the integrals

f —~|uP@)|da; p=0,1,23,---,
0
18 Cf. “Legons,” Chapter III.
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wherein 4P (a) denotes the pth derivative of the (integral) function u(a) (cf.
(14)). .
Absolutely summable series, as thus defined, being but special series summable
by definition (IV), at once satisfy conditions (4), (B) and (D), as shown in
earlier §§. It therefore remains but to consider such series with reference to
conditions (C) and (E).

Now, if the series (11) is absolutely summable, it follows from definition that
both s and #® exist. Whence, by the results obtained in § 40, we have relation
(35). In order to complete the proof that (C) is satisfied, we must now show
that if the series (34) is absolutely summable, so also is (11) and that with s and
8® defined as before, relation (35) exists. For this let us first consider the case
in which k = 1.

Place®
o) = j: |w'(t)|dt = ' [ u’(t)dtl.
We thus have
o) =|u@) — uol
and hence
|u(@) | = o(z) + |uol,
so that the integral

jowe"lu(x)ldx

must converge whenever the same is true of the integral

(49) [ ot
Now, by identity

X X
[ e = - om0 + [ orp@e
and consequently, because ¢(X) and ¢’(x) are both positive,
X X L)
f e *p(x)dx < f e (x)dx < f e3¢’ (z)dx.
(] 0 0

Thus the integrals (40) and (41) exist. Upon again applying the results obtained
in § 40, the desired conclusion now follows for the case in which k = 1.

A repetition of the reasoning evidently leads to the more general result.

We proceed, then, to show that absolutely summable series satisfy condition

(E) .24

 Cf. BRoMwich, l. c., § 106.
% The proof which follows is essentially that given by BroMwica (l. c., § 106).
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In the first place, we may write (see definitions of #; and s; in (36), and note
(43))
8192 = lim f f e =y (z)v(y)dxedy,
A=+

in which the double integral appearing in the second member is understood to
be extended over the square 0ABC of side X situated as in the following figure:

y
p A B’
\\
c B A
\\
0 A A »
Fia. 6

In fact, we have

lim f f Ty (x)o(y)dzdy = )1:2 j: f e~ =y(z)v(y)dxdy

= lim [ j: e *u(x)dx j‘: Ae"’v(y)dy] = j; ) e *u(zx)dx j‘: ) e(y)dy = 8193.

A=

Now, in case u(z) and o(y) are always positive the indicated double integral
when extended over the triangle 0A4’C’ has a value lying between the corre-
sponding integrals taken over the squares 0ABC, 0A’B’(C’, and since the latter
each approach the limit ;8; as A = o, the integral over the same triangle will
also approach the limit 8,82. On the other hand, if 4(z) and »(y) are not always
positive, the absolute value of the difference between the integrals over 04ABC
and 04’B'C’ may be made arbitrarily small by taking A sufficiently large, as we
shall show presently, thus again rendering the integral over the triangle 04'C’
equal in the limit to 8,8;.

In order to show this, let us represent by I(S) the integral in question when
extended over any given area S. Also let G(S) be the corresponding integral
when the absolute value of the integrand is used. We then have

|I(0ABC) — I(04'C")| = | I(CBC") + I(4A4'B)|
=|I(CBC") |+ |I(A4’'B)| < G(ABCC'B'A’ ).

Since ABCC'B’A’A = 0A’B'C' — OABC and since the integrand of G(S)
is always positive, the last meniber of (45) may be written in the form

27 A
(46) fc"lu(z)ldxﬁ e"’lv(y)ldy—j; 6"|“(¢)|d3[ﬂ|°(y)|dy-
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Moreover, since the series (36) are by hypothesis absolutely summable, each of
the iterated integrals in (46) approaches the same limit when A = o, so that
the expression (46) itself approaches the limit zero.

We may therefore in all cases write

47 59 = li_m f f ¢ @y (x)o(y)dzdy,

where the integration is performed over the right triangle 04’'C’, the length of
whose side is 2\,

This result being premised, let us now introduce into the second member of
(47) the new variables £, n defined asfollows:2 + y = ¢,y = éporz = (1 — 9),

y=é&.
We then have®
oz 9z
9t dn
dydz = dédn = Edédy,
9y 9y
0t O

so that the integral in question becomes
1
(48) [ eteae [ izt = ioensan.
0 0

Concerning the limits of integration here, we wish to integrate over that
area in the £, 7 plane which corresponds to the area of the triangle 04’C’ in the
z, y plane. Now, the three sides of the triangle are respectively 2 = 0, y = 0
and z + y = 2\, and our first problem is to determine what these bounding lines
become in the £, 7 plane, it being understood as indicated above, that the
equations of transformation arez = §(1 — 7), y = &9. . Evidently, corresponding
to 2 = 0 we have the two lines £ = 0, = 1, while corresponding to y = 0, we
have the two lines £ = 0, n = 0, and corresponding to =z + y = 2\ we have
theoneline £ = 2\. The area bounded by these four lines is that of the rectangle
whose vertices (in the £, 5 plane) are (0, 0), (2\, 0), (2\, 1), (0, 1). Whence, the
limits of integration are as indicated in (48).

The series for u(x) and o(y), being power series are absolutely convergent.
Hence, by the rule for the multiplication of two such series, it appears that the
expression u[§(1 — n)lv(£n) may be expanded into a series whose nth term is

(49) £ 2 L — )"

r=0

Moreover, this series will be uniformly convergent as regards 5 throughout the
208
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interval 0 < 5 < 1since for all such 5 values the term (49) is less in absolute value
than

o Ll o]

rmorl(n—1)l

and this expression is the nth term of the (convergent) product series obtained
by multiplying together the (convergent) series
[ Y Y
-;o nl & Eo al ¢
The integration with respect to n in (48) may therefore be performed term by
term upon the series whose nth term is (49), thus giving

UrOn—r

[ utet = miscensdn = S0 5w [ ert — v,

=rin —
But

v vy _tln =11
‘fo‘ﬂ (l_ﬂ)dﬂ_ (”_*_1)!’

Thus we have

1
| e = mietendn = Soon i,

where w, has the meaning used in condition (E) (§ 40).
The integral (48) thus becomes

[Cewoun,

W@ = Sun -t

n=0

where

and accordingly we have the equation

(50) 818y = jo‘ W (¢)dE.
The second member of this equation is seen to be the sum of the series
(51) 0t wet it e,
8o that our final result will now follow as soon as we show that under the existing
hypotheses the series
(52) wo+ w1+ wy + -

is summable by definition (IV).
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We may in fact show that the series (52) is absolutely summable. Moreover,
since we have shown that absolutely summable series satisfy condition (C),
it will here suffice to show that the series (51) is absolutely summable—. e., that
the integrals

f et |WW@E)|dE; k=0,1,28, .-
0

converge. The proof of this presents no difficulties and will therefore be omitted.?
43. Uniform Summability.—Following analogy with uniformly convergent
series, HARDY?” has proposed the following definition of uniform summability
for divergent series, basing the same on the form (IV) (§ 36) of definition of sum:
Definition 1. If (instead of the series of constant terms (11)) we have the
series (convergent or divergent)

é (@),

in which each term u,(a) is a function of the (real) variable «, this series is
uniformly summable throughout the interval 8 < a < # if for these values of a
the integral

Sun(a) = . [ ) e *u(z, a)dz

converges uniformly, wherein
] zﬂ
u(3, o) = 2 () 13-

Upon the basis of this definition the following theorems analogous to those
encountered in the study of uniformly convergent series may be established:®
TaEOREM 1. “ If all the terms un(c) are continuous functions of a and

S tale)
18 untformly summable, and
] zn
Eo Un(@)
uniformly convergent for any finite value of z, in an interval (B, 7), the sum of the
first series 18 a continuous function of a throughout the interval.”
TeeoreM II. “If

§ U’ (@)

18 uniformly summable in (ag — £, ag + £) and

* Cf. BRoMWICH, [. c., pp. 282-283.
37 See Transactions Cambridge Philos. Soc., Vol. 19 (1904), p. 301.
8 Cf. Haroy, l. c.
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L] , xﬂ
E, Un'(@)
uniformly convergent for any finite value of z, the series
S un(a)
=0

may be differentiated term by term for a = ay.”
Taeorem III. “If
(63) S un(a)

n=0

18 uniformly summable in (8, v) and
0 zn
,E., Un(@) -5
untformly convergent throughout the domain (0, X, B, ) however great be X, the
series may be integrated term by term over (8, v).”
Extensions of Theorem III to cases in which (563) fails to be uniformly sum-
mable in the neighborhood of a finite number of isolated points within (8, )

and to the case in which 8 =  have also been obtained. It would appear,
however, that with the indicated meaning for

é Un(@),

n=0

Theorems I, IT and III together with their generalizations relate in substance to
the properties of definite integrals of a certain prescribed type rather than to the
subject of infinite series, the latter appearing merely in the réle of suggesting the
type in question. For this reason the notion of “ uniform summability,” at
least as formulated upon the basis of definition (IV) (§ 36), together with the
resulting theorems appear somewhat artificial. This seems less true, however,
in case definition (I) (or (II)) is adopted. Thus, confining ourselves for sim-
plicity to the important case in which r = 1, we then have the following
Defination I1.® A series (convergent or divergent)

(54) ”Z:;u,.(a)

in which each term u,(«) is a function of the (real) variable o, is uniformly
summable throughout the interval 8 < a < v if for these values of « the ex-
pression

so(@) + 81(a) + - - + sa(a)
n41
converges uniformly to a limit U(a).
 Cf,, for example, C. N. Moorg, T'ransactions American Math. Soc., Vol. 10 (1909), p. 400.

where  sp(a@) = uo(a) + (@) + - + un(a)
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The theorems corresponding to I, IT and III now become considerably more
direct. Thus, corresponding to Theorem I we evidently have the following:

“If all the terms us(c) of the series (54) are continuous and the same series
is uniformly summable throughout the interval (8, v), then its sum U(a) is con-
tinuous throughout (8, ¥).”

The corresponding forms for Theorems II and III can be at once supplied.

Supplementary Remarks and Theorems

44. From §§ 4143 it may be concluded that of the six definitions of “ sum ”’
in § 36 those deserving of especial emphasis are (I) (CESARO) or its equivalent
(II) (HoLpEr) and (IV) (BomrerL). We now add certain noteworthy results
respecting (I) and (IV), omitting proofs in cases where suitable references can
be given.

1. If a series (convergent or divergent) is summable by Cesaro’s method for a
given value of r (cf. § 36), it is summable by the same method for all larger (inte-
gral) values of r.

In fact, with S, and D,” defined as in (12), we have the identities

S = 84 4 8,0 - 83 - .o - 8,0,
DD = Dy + Dy 4 Dy 4 ... + D,

and since by hypothesis lim S,?/D," exists, it follows from a well-known
theorem due to StoLz* that lim S,*V/D,*? also exists and has the same
value, provided however that as n increases S,(” eventually does not oscillate
but is such that lim $,? = =+ c —a condition here fulfilled because by hypoth-

esis lim S,/D," exists, while from the definition of D, we have at once '

lim Dy = 4 .
2. A necessary condition that any series
2 Un
“=o .
be summable by Cesaro’s method with a degree of indeterminacy r is that
(55) lim (um/n) =0. &
A noteworthy corollary of this result is as follows:
3. Let .
(56) 2 a.z®

n=0

30 See Math. Annalen, Vol. 33 (1889), pp. 236-245.
# For a proof, see BromMwics, l. ¢., § 127.

..
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be any power series having a radius of convergence equal to 1. Then the divergent
series
2 auze”,
wherein xo represenis any special value such that |zo| > 1 cannot be summed by
Cesaro’s method. Thus, in particular Cesdro’s formula cannot serve to prolong
analytically the power series (56) outside its circle of convergence.
In fact, placing u, = aszo™ we have

lim Un_ = 2
Nz 00 1
and hence
Un .
— =g H lim e, = 0.
Un—1 o + s n=o "
Whence

Un = U(To + €1)(Xo+ €) -+ (Zo+ €a).

Now, having chosen an arbitrarily small positive quantity 5, we have |e|< 7
for all n > a determinate value n,, and hence

|20+ e Szl —[nl; 5 >n,
Thus, as n increases indefinitely the expression u, becomes infinite to as high
an order as that of (|zo|—|#]|)". But for a sufficiently small choice of 7 we
have |zo|—|n|> 1, since by hypothesis |2o| > 1. Thus (55) cannot be satis-
fied for any value of r.
In contrast to this result, we have the following important theorem arising

when, instead of the definition (I) of sum, we adopt the definition (IV) of BOREL.
4, Let

f@) = 2 auz®
be any power series having a radius of convergence equal to 1. If, then, the series

o

18 summable by definition (IV) (§ 36) so also s the serves

2 "

n=0
provided xo lie within the polygon formed by tangents to the given circle at the points
(assumed finite in number) upon the circumference at which f(x) has singularities.
Moreover, f(x) may be extended analytically to all such points x, by means of the
sum formula in question, <. e.,
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flz = [ e ulezode
where
u(azo) = Za_,.(a:;:_o)_ .
=0 n
The summability at zo will be absolute (§ 42) and u will be uniform (§43)
throughout any region situated wholly within the indicated polygon (polygon of
summability).3?
5. Absolutely convergent series are absolutely summable, but series that are
merely convergent may not be absolutely summable.®
6. If but one of two series 18 absolutely summable while both are summable by
definstion (IV) (Borel’s integral) to the respective limits s,, 8, then the product
series (cf. (37)) 13 summable by the same definition to the value 8y, 82, but not neces-
sarily absolutely summable.®*
7. If two series are summable by definition (IV) (Borel’s integral) to the values
81, 83 respectively, then the product series (cf. (37)) whenever summable necessarily
has the sum $,3;.%
8. If the coeffictents u,, us, us, --- of the divergent series (11) are such that
the expressions

Eo = u,, E, = uo+ w,
E; = uo+ 2uy + us,
(57) E; = uo+ 3ur + 3us + Uy,

Eu=uo+nu1+"(n2_,l) Ut oo A nUny U

all vanish after a certain point: n = m, then the series may be summed by definition
(IV) (Borel’s integral) and the sum will be

Ey E, E; E.
s=ptatmt o tom

—. e., the sum will be given by summing the series by Euler’s well-known
method for converting a slowly convergent series into a more rapidly converging
one.®

8 Proof of the various statements here made is readily supplied from the remarks of BrRoM-
wich, l. c., § 113.

8 Cf. HarpY, Quarterly Journ. of Math., Vol. 35 (1904), pp. 25, 28.

# Cf. Haroy, L. c., pp. 4344.

# Cf. Haroy, l. c., pp. 4445

# Cf. BroMwich, l. c., § 24.
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the form

G—ar+as—az+ ---;  an positive

for which the successive differences between the quantities ao, a1, as, --- all
eventually vanish —e. g., the series

i 1-24+3—-—445—--..,
wherein the quantities E,, E,, E,, etc., become
Eo=1, E1=—1, E’=E;="'=E,.=0,

and hences =34 — %=1
The proof of statement (8) may be readily supplied when we make use of
the Lemma of § 37. Thus, in the notation there employed, let us take in the
present instance
n 2p)"
R T T L -
Then

l=lim.9,.=E°

n=w ?
and condition (A4) of the lemma is at once seen to be satisfied (cf. (16)).
Application of the lemma thus gives

«(d2)
nl

E E,
+'2?!+ "-+2—..‘+—1

l=1lime?r D

p=0 n=0

= lim ¢7**3(2a) = lim ¢~*s(a),

where s(a) is defined by (13). Moreover, this result may be written (cf. (25))
in the form

t=uot [ ewleda,
[\]
where u(a) is defined by (14). If the integral here appearing be integrated by
parts (cf. (41)) we thus obtain
I= = [ u(@les + [ e ulo)de.
V]

In order to finish the proof it remains but to show that the first term here
appearing in the second member is equal to zero.

Upon noting the meanings of E,, E,, E,, - - -, as given in (57), we obtain

o? a? a™

eu(@) = e*(uo+ wma + U5yt --1) = Eo+ E1a+Ezﬁ+ +Em1—n‘!

and hence
lim e~u(a) = lime‘“‘[Eo+ Ea+ -+ E,,.:'n—'—'l] = 0.

This result evidently becomes of especial significance for all series (il) of:,



CHAPTER V

THE SUMMABILITY AND CONVERGENCE OF FOURIER SERIES AND ALLIED
DEVELOPMENTS

45. In the present chapter it is proposed to derive the principal known
results concerning the summability of Fourier series and other allied develop-
ments for functions of one real variable (developments in terms of Bessel func-
tions, Legendre functions, etc.).! We shall take the word “ sum ”’ in the HOLDER
sense? (§ 36) according to which a given series (convergent or divergent)

¢)) Eo Un
has its sum # defined by the equation
2) s =lims,; r= fized integer = 0,

=00

where
SO =am=utut -+ u,

1
,”u? =11 (360 + 5, + oo F 8,0,

1 :
ey (80('—1) + 81('_1) + oo a”(v—l)).

8n (r =

Moreover, if the terms u, are functions of the (real) variable z (as will now
always be the case) when considered throughout an interval (a, b), the series (1)
will be termed uniformly summable throughout (a, b) in accordance with the defi-
nition II of § 43 —. e., provided that the limit (2) is approached uniformly for
the same values of z.

In view of the fact that any discu.sion of the summability of Fourier series
and other allied developments is intimately connected with the corresponding
discussion of convergence, the latter being in fact but the case of summability
in which r = 0 (cf. (2)), we shall as a matter of course elaborate both aspects
of the subject? No attempts will be made however to obtain theorems con-
taining the minimum restrictions for a given function f(z) in order that it be

! Bee explanatory remarks in the Preface.

* The results obtained will therefore (§ 38) be convertible at any point into those for summa-
bility in the Cesiro sense.

. 3 Sim-ze- all convergent series are summable but not conversely it is evident that more restric-
tive c?ndmons upon u, are in general necessary to insure convergence than summability. This
fact will be well illustrated in the studies of the present chapter.
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developable in a summable (or convergent) series of any one type. The emphasis
will be placed rather upon the attainment of a general theory of such a nature
that the various more important special developments, including Fourier series,
and the familiar developments in terms of Bessel functions and Legendre
functions, may be studied as special applications of it, provided f(x) satisfy any
one of various slightly limiting conditions.* This general theory is elaborated
in §§ 46-56 following which the applications just mentioned have been carried
through (§§ 57-70).

The basis of the entire chapter is DINI’s great work entitled “ Serie di Fourier
e altre rappresentazioni analitiche delle funzioni di una variabile reale ’ (Pisa,
1880) and due acknowledgment is here made to this source.

I
FoURIER SERIES

46. If f(x) be a given function of the real variable 2 defined throughout the
interval (— =, x) the corresponding Fourier series is by definition

(3) a0 + il (an cos nz + by sin nx),
where

ay = %_j::f(:t) cos nxdz, b = },j::f(x) sin nzdr.

As regards the convergence and summability of this series, the following
theorems are well known:

TrEOREM 1. If f(z) remains finite throughout the interval (— x, x) with the
possible exception of a finite number of points and is such that the integral

@ [ 1@

extists, then the Fourier series (3) will converge at any point z (—r <z < 7) in
the arbitrarily small neighborhood of whigh f(x) has limited total fluctuation, and
the sum wrll be

1 [flz — 0) + f(= + 0)].

Moreover, the convergence will be uniform to the limit f(x) throughout any in-
terval (a’, b') inclosed within a second interval (ay, by) such that

—r<a1<ad <bV<h<~w

¢ As regards convergence, including uniform convergence, general theorems of the nature
here indicated together with applications have been given by HoBsoN in a series of memoirs
appearing in the Transactions of the London Math. Society (Vol. 6 (1908), pp. 349-395; Vol. 7,
PD. 24-48; 1bid., pp. 338-388). Corresponding general studies for summability do not appear
to have been thus far carried through, though numerous results have been obtained by special
methods. For further remarks, see notes appended to the theorems of §§ 67 and 68.
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provided that f(x) is continuous throughout (a’, b’) inclusive of the end points z = o,
z = b’ and has limited total fluctuation throughout (a,, b;).5

TraeoreM II. If f(x) remains finite throughout the interval (— x, x) with the
possible exception of a finite number of points and 18 such that the integral (4) exists,
then the Fourier series (3) will be summable (r = 1) at any point 2 (— v < z < =)
at which the limsts f(x — 0), f(x + 0) extst, and the sum will be

3 [f@ — 0) + f= + 0)].

Moreover, the summability wnll be uniform to the limit f(x) throughout any
interval (o', V') such that — x < a’' < V' < x provided that f(x) is continuous
throughout (a’, b’) inclusive of the end points.®

TaeoreM III. If f(x) when considered throughout the interval (— =, =) satis-
fies the conditions mentioned in Theorem I and is such that in arbitrarily small
neighborhoods at the right of the point x = — 7 and at the left of the point z = «
1t has limited total fluctuation, then the Fourier series (3) will converge whenx = — «
or x = = and in either case the sum will be

1 [f(xr — 0) + f(— =+ 0)].

TreoREM IV. If f(x) when considered throughout the interval (— =, x) satis-
fies the conditions mentioned in Theorem I and is such that the limits f(x — 0),
f(— =+ 0) exist, then the Fourier series (3) will be summable when = 7 or
z = — «x and in etther case the sum will be

1 (fx—0) + f(—x+0)].

It is our purpose here (having in mind the essential steps incident to the
formation of a general theory for the study of this and other allied develop-
ments) to show in the first place that the proof of Theorem I may be made to
depend upon the existence of the three following relations which themselves are
independent of the function f(z) and concern only the trigonometric expression

. 2n+1
sin —5 t
(%) ¢(n, t) = Tt

2 sihé

n being limited to positive integral values.

(I) The integral ‘
I o(n, t)dt

8 Cf. HossoN, “Theory of Functions,” §§ 448, 451, 457, 459. Also, CHAPMAN, Quarterly
Journ. of Matk., Vol. 43 (1911), p. 33.
¢ Cf. Hosson, l. c., § 469.
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when considered for values of ¢ in the interval — 2r + ¢ =t = — ¢, ¢ being an
arbitrarily small positive constant, converges uniformly to the limit — 4 when
n = o ; while the same integral when considered for values of ¢ in the interval
€ =1t = 2x — e converges uniformly to the limit 4 when n = «.”

(IT) For a sufficiently small choice of the positive quantity ¢ we have

j«: ‘ o(n, t)dt

where A is a constant independent of both n and ¢.2
(III) For a sufficiently small choice of the positive quantity ¢ we have

< A4; —e=t=e

le(n, )| < B;, —2r+es=t=—¢ e=t=2r—e

where B is a constant independent of both n and ¢.

In order to prove that Theorem I depends, as stated above, upon the existence
of these three relations, let us suppose at first that « has some special value z = «
such that — 7 < @’ = a = ¥’ < =, the quantities a’, b’ being regarded as fixed.
With this value of « the (» 4+ 1)st term of the series (3) takes the form

}r' [ : f(x)(cos nx cos na 4 sin nz sin na)dr = ;ll-_ j: : f(x) cos n(z — a)dz,
so that the sum of the first (n 4 1) terms becomes
@ =2 ["1@) {4+ Seosnte — ) } .

Upon making use of the well-known relation

. 2n+1
. sin—— =z
34 D cosnz= o
=t 2 sin 3
we thus have
© w@) = [ f@otn, z = )iz,

where ¢(n, z — a) is to be determined by (5).

Whence also, having chosen an arbitrarily small positive quantity ¢, we may
write
@) = [ ez — o+ [ j@etn, - a)iz
(7) - ate e
+ [ f@emz—ai+ [ f@omz— a)ia.

7 For a proof of this statement, see Appendix, § 1.
8 For a proof, see Appendix, § 2.
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We may now show that the conditions placed upon f(z) for the whole (closed)
interval (— m, 7) (cf. Theorem I) when taken in conjunction with relations (I)
and (IIT) suffice to make the limit approached by each of the first two integrals
of (7) equal to zero when n = . In fact, we shall show that this limit is
approached uniformly by each of these two integrals when they are considered
for values of a for which @’ = a = b'".

Considering, then, the first integral in the second member of (7), let us repre-
sent by 1, 25, 23, -+, 24 (s > 2,—1) the points (¢ in number) at which f(z)
becomes infinite in the (closed) interval (— , ), assuming at first for simplicity
that z, + — m, 2, +# v. Having chosen an arbitrarily small positive quantity
w, let us also suppose at first that the value z = a — € lies within one of the
following intervals:
® (= m 2 — w), (1 4+ w, 23 — w), R (xq + w, — ),

1. e, let us assume that z = a — ¢ is not one of the points at which f(z) becomes
infinite. We may then express the integral in question in the form

©® " f@etn, 2 — )iz = S+ R

where

s=(j:_'+ R —')fcx)so(n,x—a)dx, =q)

b ire T e
and
R=(f:'+j:'+ +£:')f(z)¢(n,x-a)dz-

Now, introducing relation (III), we have

+o +0 ot
RI<B( [+ [t [T i@l
and since the integral (4) is assumed to exist it thus follows that for a sufficiently
small choice of w we shall have |R|< Bgp < Bgp where p is a preassigned
arbitrarily small positive constant.

The value of p having been assigned and w then determined in the manner
just indicated, we turn to the expression S. In considering this it is first desirable
to make the following observation.

Consider the set of intervals (8). Let us divide the first of these into p equal
sub-intervals of length &), the second into the same number p of equal sub-
intervals 8, -- -, the (¢ + 1)st into the same number p of equal sub-intervals
of length §,41. Let D, , be the fluctuation of f(z) in the sth one of the intervals
01, let Ds,, be the fluctuation of f(z) in the sth one of the intervals ,, - - -, let
Dgy1, . be the fluctuation of f(z) in the sth one of the intervals dg41. Finally,
let us form the sums



ProoF oF THEOREMS 107

(10) algl)l.u 62 gDS.n ] 6&121)”.1...

Since f(z) is integrable over each of the intervals (8), it follows that we can make
our choice of the integer p so large that each of the sums (10) will be less in
absolute value than the preassigned quantity p already mentioned. At the
same time, p may be chosen so large that each of the integrals

11) ﬁlf(x)ldx; 8=1,23,---,g+1,

where the integration is performed over any one of the intervals 8,, will likewise
be less than p. In what follows the quantity p will be understood to be any
special one determined according to the two conditions just indicated.

Returning to the expression S, let us now consider the first of the integrals
of which it is constituted. Calling z = £,_1, z = £, the values of z corresponding
to the end points of the sth one of the intervals 8;, we have

jj—.f-¢dz=)ff:f-¢dz; /=1

=1 ¢ = o(n,z— a).

Now, introducing the constant B defined in (III), we may write

[rosen [ s pi=

and the function ¢ + B will be positive for all values of zsuch that {,, 3 < 2 < &,
(n having any value which it may take). Hence, upon applying the first law of
the mean for integrals, we have

[ o o i [

where f, and f,’ are certain values lying between the upper and lower limits of
f(z) when ¢ < z < &,
Since £ — £,-1 = 8; we thus have

f:f - pdz = f, ff j ¢dz + 0,B8:Dy .,

where 6, is a quantity lying between — 1 and + 1 and where D;, , has the meaning
already indicated.
Hence, recalling what has been said of the sums (10), we may write

12) E_.f-m=§f.£i¢h+0Bp; —1<0<1.
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Now,

j; : pdz = - e(n, )dt = j‘: o ¢(n, t)dt — j; o o(n, t)dt

fo1—a

and corresponding to a second arbitrarily small positive quantity ¢ we may,
by virtue of relation (I), find a quantity n, ¢ndependent of a such that

fa—ﬁ
f. ¢(n’ t)(u= _i+61¢ n > n,,
° —1<6;,<1, —1<6,<1,

¢s1—a
[ omnit=—1+00 d<a<v.
0
Whence, .
) n > n,,
‘I._,‘de<2d {al<a<b1,

and hence also (cf. (12)) we have for the value of « under consideration

E1—e

(13) I odz

< 2Mpes + Bp; n>n,,

where M represents the upper limit of |f(z)| in the intervals (8).
Similarly, all the g 4 1 constituent integrals of S, except the last, may be thus
treated, thereby leading to the equation

(14) S=P+ [ - f- iz,

2yt

where for all values of n greater than some value independent of a we have
|P| < 2gMpo + gBp = 2qMpo + ¢Bp.

Let us consider finally the integral appearing in (14). For this we first note
that the interval of integration consists of a portion (or at most the whole) of
the interval (z, + w, 2,41 — w) belonging to the set (8). Let us suppose that
7r < @ — € = 1n41 Where 7, and 7,41 are the values of z corresponding to the
extremities of the rth of the p divisions of length 8,4, into which we have already
divided the interval (z, + w, 2441 — w). We may then write

L_:f-wdx=£”f-¢dz+j:_'f-«pdz-

The last integral l}ere appearing is less in absolute value (cf. relations (III)
and (II)) than

(15) B[ i@l <B [ Ife)]de < Bo

e

where p has the meaning already given.
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Again, let there be ! (I = p) of the divisions §, in the interval (z, + o, 7,).
Then, treating the first integral in the second member of (15) as we did the first
integral in S, we obtain (cf. (13))

f" f-¢dz’<2Mla+ Bo=2Mps+ Bp; n>n,,
Iyt

where 7, is independent of «.

In summary, then, we have the following result: Let 2, z, 23, < - -, s, * - *, Z¢;
(e > Z4-1); (1 + — 7, z, ¥ 1) represent the ¢ points within the interval
(— m, 7) at which f(z) becomes infinite, and let « be any value such that o —
(cf. (7)) lies within one of the intervals

—mzm—ow), @Gtozn—w), - @E+on;
w arbitrarily small and positive
and also such that —r < @’ =a =¥ < x. Then, corresponding to an arbi-

trarily small positive quantity p and a second such quantity o, we may determine
a positive value n, independent of « and such that

' [ _.f(x)tp(n. z— a)dz| < 2pM(g+ 1)o + B(g+ 1)p; n > n,.

Since B, ¢, M and p as well as n, are each independent of , it follows that for
all the indicated values of a the first integral in the second member of (7) converges
uniformly to zero when n = «,

It remains to show that the same is true when a — ¢ pertains to one of the
intervals of the following set:

(z1— w, 21+ w), (2 — w, 23 + w), crey (Bg— @, 20+ Ww);

w arb. small and positive.

The desired result follows by reasoning directly analogous to the preceding
after rewriting (9) in which S and R are, however, defined as follows:

s=(T+ [T+ [ )i@eme - g=0,

nte 3p1te
R= (j::.+ ’1_:‘4_ cee z'::” + L:')_f(z)go(n, z — a)dz.

Again, the same conclusion may be likewise reached in case either or both
of the points 2 = — m, 2 = x are points at which f(z) becomes infinite. The
forms in which S and R should then be taken readily suggest themselves and are
therefore suppressed.
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In like manner it appears that the second integral in the second member of
(7) converges uniformly to zero when n = o for all values of « such that

—r<d=as=b<m

These results having been established, we turn to a consideration of the last
two integrals in the second member of (7). We shall suppose at first that «
has any spectal value such that —r < a' = a=b' < .

Since by hypothesis f(z) is of limited total fluctuation in the neighborhood of
the point z = a, the expressions f(a — 0), f(a + 0) certainly have a meaning.?
We may therefore write the third integral in the second member of (7) in the form

18 fe—0 [ omod+ [ (fa+ D~ fa— Olotn, Dt

When n = o the first term here appearing approaches the limit 3f(a — 0)
as a result of relation (I). As to the second term, it follows from our hypotheses
upon f(z) in the neighborhood of the point # = « that the function f(a 4+ ?)
— f(a — 0) is of limited total fluctuation in the interval — ¢ < t < 0, at least
if ¢ be chosen sufficiently small. Whence, in this interval the same function
will be either monotone or will consist of the difference of two monotone func-
tions.!® In the former case we may apply the second law of the mean for integrals
and write

D) [ e+t = fla— Olo(n, 0t = [fa— O +fla— 00 [ o(m, 0
0 < € <e

At the same time our choice of ¢ may be made so small that the expression
|[fla — € — fla — 0)| will be less than any preassigned quantity . With e
thus chosen, we have now but to make use of relation (II) to see that the
second term of (16) may be made less in absolute value than As, whatever the
value of n. In case f(a + t) — f(a — 0) consists of the difference of two mono-
tone functions, the proof may evidently be carried out in a similar manner,
showing that in this case the absolute value in question will be less than 240.

Therefore, the limit of the sum of the first and third terms in the second
member of (7) as n = © is 3f(e — 0). Similarly, the limit approached by the
sum of the second and last terms is 3f(a + 0).

The first part of Theorem I is thus fully established. It remains to consider
only that part which concerns uniform convergence, and since we have already
shown that for all values of @ such that — v < @’ = a = b’ < 7 the first and
second terms in the second member of (7) converge uniformly to zero, it will

% Cf. HoBsoN, l. c., § 194.
10 Cf. HoBsoN, l. c., § 195.
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now suffice to show that under the hypotheses of the last part of the Theorem
the last two terms of (7) when considered for the same values of « each converge
uniformly to the limit }f(c).

Now, if f(z) be continuous (as the present hypotheses demand) throughout
the interval (a’, b’) (z = a’, z = b’ included) then f(z) will be uniformly continu-
ous throughout this interval® Hence, corresponding to an arbitrary choice of

u Cf. Hosson, l. c., § 175.

the positive quantity o, it is possible to determine a positive e tndependent of a
and such that
(18) lflea— € —fl@)|<o; @ <a<l.

Introducing this choice of e into (16), we may again write (17) for all the
indicated values of a (¢’ = a = b’) since, from the hypotheses of the second
part of the Theorem, it follows as before that the function f(a + t) — f(a) is
either monotone or consists of the difference of two monotone functions of ¢
throughout the interval — ¢ < t < 0 whatever the value of a (¢’ = a = V')—
at least if € be taken so small that a’ — € > a,, where a, has the meaning given
in the Theorem.

Thus, we reach the desired result respecting the third term in the second
member of (7) and similarly, we reach the indicated result for its last term.

47. We turn to the proof of Theorem II. It is our purpose here to show that
relations (I) and (III) of § 46 together with the following suffice for the proof:

(ITI)’ Having placed

(19) &, ) = 7 ol 0,

where ¢(n, £) is the trigonometric expression (5), we may write for a given value
of the positive quantity e and all subsequently chosen sufficiently large values
of n

f' |®(n, t)]|dt < C;

where C is a constant (independent of both n and e).

In proving Theorem II we shall therefore substitute relation (II)’ for relation
(II) of § 46, but we shall employ relations (I) and (III) as before.

Assuming first that a has any special valuesuch that —r < ad' =a=b0' < =,
we have from (7)

1

n-41
(20

@) + 1) + -+ oalel = [ J@00, 2 — a)de

+ [ 1@, a—aiat [ f@aim, 2 - s+ " t@)e(n, « — a)da,

where & is given by (19).
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Now, the fact that ¢ satisfies (I) and (III) enables us to say at once that &
also satisfies the same relations. In fact, if ¢ satisfies (I) the principle of con-
sistency (§ 37) as applied to the HOLDER method of summation shows that &
also satisfies it, while (III) becomes satisfied by ® since we may write

|®(n, t)l—f—iH«p(n, O+lew—1,0]+ -+ 4]0, 9]l <%?= B.

The second member of (20) is the same as that of (7) except for the substi-
tution of ® for ¢, and since ® satisfies relations (I) and (III) it follows precisely
as in the discussion in § 46 that the first two integrals on the right in (20), when
considered for values of « such that — 7 < @’ =a = b’ < v, converge uni-
formly to zero as n = o, provided merely that the integral (4) exists. The

third term of (20) may be written in the form

fa=0) [ @m 0it+ [ (fe+ D — e~ Olotm, i

provided that f(a — 0) exists. When n = o the first term here appearing
approaches the limit 4f(a — 0) since, as already pointed out, ®(n, t) satisfies (I).
As to the second term, we may choose € so small that throughout the interval
— € < t < 0 we shall have |f(a + ) — f(@ — 0)| < o where ¢ is an arbitrarily
small preassigned positive quantity. With ¢ thus chosen and n then taken
sufficiently large the term in question becomes less in absolute value than

(21) a’f. |®(n, t)|dt < Co,

where C is the constant defined in connection with relation (II)’. Thus, the
sum of the first and third terms of (20) approaches the limit 3f(a — 0) whenn=c0.
Likewise, the sum of the second and last terms of (20) is seen to approach the
limit 3f(a + 0).

The first part of Theorem II thus becomes established, and in order to prove
the second part it suffices to note (cf. the discussion of (16)) that if f(x) is con-
tinuous throughout the interval (a’, b’) inclusive of the end points, then the
quantity e in (20) may be chosen independently of a (¢’ < a < b’).

48. Having shown that Theorem I results from relations (I), (IT) and (III)
and that Theorem II results from (I), (II)’ and (III), we shall now show that
Theorem III results from (I), (II) and (III) together with the following:

a p(n, t & 2m) = o(n, 7). B
Let us take first the case in which z = x. The expression for 8,(r) may be
12 The proof of (IV) is immediate from (5).
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obtained by placing o = 7 in (6). This expression, after placing x — v =1,
becomes

@) o) = f ftr + Don, it = ( [T+f )ftr -+ tetn, s

Of the two integrals here appearing in the last member, the first, after making
the substitution ¢’ = 2x + ¢ and dropping accents, takes the following form as a
result of (IV)

[ 5= 7+ o, 0.

Whence, we may write

o = [ for+ eln, it + f f(= 7 + Don, Hdt
(23) - 0 ‘ « (e > 0).
+ [ s+ ot 0t + [ = 7+ Dol

We may now show that as n = o the limit approached by each of the first
two integrals here appearing is 0. In order to do this it will suffice, since the
integral (4) exists, to show that the property just indicated is true of each of the
integrals

o/
ff(f + t)e(n, t)dt, I f(_ x+ t)o(n, t)dtr

where it is understood that f(x 4 ) remains finite throughout the (closed)
interval (¢, d); — # = ¢ < d = — ¢, while f(— x + t) remains finite through-
out the (closed) interval (¢, f);e=e<f=r.

Let us divide the interval (¢, d) into p equal sub-intervals each of length &
by means of the pointst=c¢, t=#8,t=1t, ---, ¢t =t,1, t = d. Then, with
the meaning for B appearing in (III), we may write

St Dolm, 0t = [ fla+ Ol 0 + Bt~ B [ e+ i

to-1

and [¢(n, t) + B] will be positive when ¢,_; < t < {, (» having any fixed value).
Hence, applying the first law of the mean for integrals, we obtain

[: :f(a+ t)e(n, t)dt = f, j: :¢(n, t)dt + Bf, j; it — Bf | a,

te1

where f, and f,’ are certain quantities lying between the upper and lower limits
of fla+ t) when t,., < t < &,.
Since ¢, — {,—; = §, we thus have

[ sa+vom vdt =1 [ o, t+ 088D —1<0,<1,

where D, is the fluctuation of f(a + t) in (t,—1, £,).
9
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Hence also

@0 [ fatvom tit= 31 [ om0+ 083D, —1<0<1

-1

Now, by taking p sufficiently large the last term of (24) may be made arbi-
trarily small in absolute value, as follows from the existence of (4). The value
of p having once been chosen, let us allow n to increase indefinitely. The last
term of (24) continues arbitrarily small in absolute value, while its first term
approaches the limit zero, as appears directly upon writing

-1
and applying (I).

Similarly, the second term in the second member of (23) is seen to have the
property already indicated.
As to the third integral in the second member of (23), let us write

[ s+ oo, it = s = 0) [ o, 1

(25) 0
+ [ U+ 0 = for = Oletn, 0,

noting that f(r — 0) necessarily exists since, according to the hypotheses in
Theorem III, the function f(z) is of limited total fluctuation in the neighborhood
at the left of the point £ = v. Upon comparing (25) with (16) and noting the
statements in § 46 connected with the latter, we see at once that as n = o« the
expression (25) approaches the limit 3f(r — 0). Likewise, as n = o the last
term of (23) is seen to approach the limit 3f(— x + 0).

In case z = — = (instead of z = ) we have the following equations corre-
sponding to (22) and (23):

== [ s w+vom, 0t = ( [+ [~ 7+ Dotm, 0
= [(1= =+ om0+ [ fex + Dotn,

or

(=) = [ fer+ o, i+ [f= 7+ Ogln, i
(26) - . « .

+ [ s+ 0t 0+ [ 5= =+ Dotm, 0

and, upon considering the four integrals here appearing on the right as we con-

sidered those in (23), we find
lim 8,(— 7) = 0+ 0+ 3f(r + 0) + 3f(— = + 0).
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Thus, the proof of Theorem III becomes complete.
49. Theorem IV likewise follows from (I), (II)’, (III) and (IV) upon noting
that the expressions '

arbED FaED + o+ a( o)

may be obtained by replacing ¢(n, t) by ®(n, t) in (23) and (26) and that, as a
result of (IV), we have ®(n, t + 27) = ®(n, ?).

II

THE REPRESENTATION OF ARBITRARY FUNCTIONS BY MEANS OF DEFINITE
INTEGRALS. THE FORMATION OF A GENERAL THEORY FOR THE STUDY
OF THE SUMMABILITY AND CONVERGENCE OF FOURIER SERIES AND
OTHER ALLIED DEVELOPMENTS

50. The manner in which the summability and convergence of Fourier series
has been shown in §§ 4749 to depend upon the properties of the integrals

[ oem, 0dt, [ &, t)d,

where ¢(n, t) and ®(n, t) are defined by (5) and (19) readily suggests the general
problem of determining a set of sufficient conditions for any function ¢(n, t) of
the two real variables n, ¢, or more generally, for any function ¢(n, a, t) of the
three real variables n, a, ¢ in order that the integral (cf. (6))

—a b
21) fatdpma it or [ f@otn oz — a)ds
shall converge when n = « to the values 3 [ f(a — 0) + f(a + 0)] or 3 [f(b — 0)
+ f(a + 0)] according as a < a < b or a = either a or b. Naturally, the range
of possible existence for such functions ¢ will depend upon the conditions im-
posed upon the given function f(z) when considered throughout the interval
(a, b), and in determining the form of such conditions we shall hereafter be
guided by the limitations upon f(z) occurring in the Theorems of § 46. The
general theorems about to be obtained will serve as a foundation for the dis-
cussion in §§ 64-70 relative to the summability and convergence of the well-
known developments in terms of Bessel functions, Legendre functions, etc.

51. THEOREM I. Let ¢o(n, a, t) be a function of the real variables n, o, t which,
when constdered for values of a lying within any sub-interval (a’, ') of (a, b) (a < @’
< b’ < b) satisfies the following three relations in which n 1s restricted to positive
integral values and in which e represents a positive quantity which may be taken
arbitrarily small:

— % when a—a=t=—e¢
4 when e=t=b-—oa.

0] lim ‘ o(n, a, t)dt = {
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Moreover, let these limits be approached uniformly for all of the same values of
a and t.13

D) f¢(n,a,t)dt’< A; —e=t=e¢
(1]

where A represents a constant independent of n, a and t.
(II1) lem,a,t)|< B; a—a=t=—¢ or esSt=b—a,

where B represents a constant independent of n, o and t.

Also, let f(x) be any function satisfying the following two conditions:

(A) When considered throughout the interval (a, b), f(x) remains finite with the
possible exception of a finite number of points and is such that the integral

f If@) |dz
exists.

(B) When considered tn an arbitrarily small neighborhood about the (special)
point z = a (6’ < a < V') f(z) has limited total fluctuation.
Then we shall have for the (special) value of a mentioned in (B)

b
(28) lim | f@)e(n, o, x — a)dz = } [flae — 0) + flee + 0)].

Moreover, if (instead of condition (B)) f(x) i3 continuous throughout the interval
(a', b'), the points x = o', z = b’ included, and has limited total fluctuation through-
out an interval (ay, b)) such that a < a1 < @’ < b’ < by < b, then we shall have
untformly for all values of a in (a’, b’)

(29 im | f@)e(n, @, 2 — a)dz = f(a).

13 Thus, to an arbitrarily small positive quantity o it shall be possible to determine a value n¢
independent of both « and ¢ such that

I‘/:qp(n,a,t)dt+§|<v; n>ne

provided « and ¢ are assigned values consistently with the relations
a <a<lb; 6a—a=Il=—ec

Likewise, \
Ij; p(n,a,t)dt—il < o, n > ne
provided « and ¢ are assigned values consistently with the relations

a <a<b; e=I=b—a

It may be added that in case one confines the attention to the convergence of the integral

(27) for special values of « (thus not considering questions of uniform convergence) it suffices

that relation (I) shall be satisfied for each special value of a (6’ < a <b'). Similarly, the con-
stants 4 and B of (II) and (III) may then depend upon a.
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Proof —The proof of this theorem is readily supplied upon referring to the
methods employed in § 46 for the study of the integral (6). We shall therefore
merely indicate the essential steps.

Representing the integral (27) by sa(c), we first write (cf. (7))

n@= [ f@emaz—adt+ [ [@em az— )

ate

a at e
+ [ f@otm oz =izt [ feen oz - i

“a—¢

Of the four integrals here appearing, the first two approach the limit zero
asn = o and the convergence is uniform for all values of @ such thata’ < a < ¥',
as results from (I), (III) and (4). Moreover, the third and fourth integrals
(considered for any special value of « such that ¢’ < a < ') approach respec-
tively the limits }f(a — 0), 4f(a + 0), as results from (I), (II) and (B) (cf. (17),
(18)).

Likewise, upon comparison with the corresponding studies in § 46, it appears
that equation (29) will hold true uniformly under the conditions stated in the
theorem.

52. THEOREM II. Let o(n, a, t) be a function of the real variables n, o, t
which, when considered for values of a such that a < ¢’ < a < b’ < b, satisfies
relations (I) and (III) of § 51 and is such that if we place

(30) Q(n’ a, t) = ;:}_—i [¢(n’ a, t) + ¢(n —la t) + -+ ¢(O» a, t)]

the following relation 1s satisfied: corresponding to a given € > 0 we shall have for all
subsequently chosen sufficiently large values of n

any f @, o, )|t < C

where C represents a constant independent of n, a and e.

Also, let f(z) be any function which satisfies condition (A) of § 51 together with
the following:

(B)' When considered in the neighborhood of the (special) point x = a (' < &
< V), the limits f(a — 0), f(a + 0) extst.

Then we shall have for the (special) value of a mentioned in (B)’

(€)Y lim | f(z)®(n, a, z — a)dz = 3 [fle— 0) + fla+ 0)].

Moreover, if (instead of condition (B)’) f(z) i3 continuous throughout the interval
(a’, V'), the points x = a’, x = b’ included, we shall have uniformly for all of the
same values of a

li_m f@)®(n, a, z — a)dz = f(a).
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The proof of this theorem, like that just indicated for Theorem I, is at once
supplied upon following the steps indicated in § 46 with reference to the special
integral (6) there occurring. We therefore omit it.

53. As a generalization of the Theorem III of § 46 we have the following

TaeoreM III. Let ¢o(n, o, t) be a function of the real variables n, «, t which,
when considered for the special values @ = a, a = b (b > a) satisfies the following
four relations in which n is restricted to positive integral values and in which e repre-
sents a posttive quantity which may be taken arbitrarily small:

lim | ¢(n,a t)dt=—1}% when a—b+e=t=—g¢
(]

(I)a.b ¢
m | o(n,b,t)di=3% when e=t=b—a—e
=w Jo

(ID)a,s Relation (II) of § 55 is satisfied when o = a and t lies in the interval
0 =1t = ¢; also when a = b and t lies in the interval — e =t = 0.

(110 {|¢(n,a,t)l<B when a—b+e=t=—e
a,b

lo(n, b,t) |[< B when e=t=b—a—e¢
where B 13 a constant independent of both n and t.
Iv) p(n,a,t+b—a)=onbt+b—a)=enat) = ¢nbd,1).

Also, let f(x) be any function which satisfies condition (A) of § 51 and is such
that in arbitrarily small neighborhoods to the right of the point = a and to the left
of the point = b it has limsted total fluctuation.

Then we shall have

li_ln bf(x)¢(n; a, z — a)dz = lim f(@)e(n, b, x — b)dz

T = 1156 — 0) + fa + O)].

Proof.—Here again the proof may be easily supplied upon reference to the
analysis occurring in § 48. Thus, for the case in which @« = b we may write

0w = [ o+ 0o b 0a=( [+ [+ [ )16+ b 0a

a—bd+¢

which, upon making the transformation ¢’ = b — a 4+ ¢ in the first integral of the
last member and making use of (IV) becomes

w® = [ 0+ 0ot b, 0dt+ [ b+ Dotn, b, D

a—~b+e

+ f " fa + o(n, a, t)d.
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Of the three integrals here appearing, the first approaches the limit zero when
n = o, as results from (I),, », (III)4,  and (4) while the second and third approach
respectively the limits 4f(b — 0) and f(a + 0), as results from (I)s,s (II)a,s
and the assumption regarding the behavior of f(z) in neighborhoods arbitrarily
near to the points z = a and z = b.

Similarly, in case @ = a we may write

w@= [ fo+0otn, o 0dt=( [+ [+ [ )atnetn, o, 0

= [ fa+ ot 0, 0dt+ [ 16 +0etmb, tat
+ [ fa+ Dotn, a, e,

from which we deduce the indicated result as before.

54. Again, we have (cf. the remarks in § 49 on Theorem IV) the following

THEOREM IV. Let o(n, a, t) be a function of the real variables n, a, t which,
when considered for the special values o = a and a = b satisfies relations (I)a, s,
(IID)4, » and (IV) of § 54 and also the following:

The integrals

ID)a.s j:]@(n, —1,%)|dt, f |®(n, 1, t)|dt (e >0),

when considered for all values of n sufficiently large remain less that a constand
(independent of ¢).

Also, let f(z) be any function whick satisfies condition (A) of § 51 and s such
that the limits f(a + 0), f(b — 0) exist.

Then we shall have

li_m l'f(:z:)cl)(n, g, z— a)dzx = li_m f@)®(n, b, x — b)dx
=} [f(b — 0) + f(a + 0)].

55. Besides the relations given in Theorems IIT and IV concerning the func-
tions ¢(n, a, t) and ¢(n, b, t) (which relations are satisfied in particular by the
function (5) pertaining to Fourier series, with « = — 7 or @ = ) it is important
to note certain others which we shall find fulfilled by some of the functions
¢(n, a, t) met with in the succeeding pages but which are not fulfilled by (5).
These relations together with their effects upon the limiting values of the integrals

ff(x)ﬂo(n’ a, z — a)dz, ff(z)q)(n’ a, z — a)dx

we now summarize in the following four theorems:
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TeEOREM V. Let ¢o(n, a, t) be a function of the real variables n, a, t which,
when considered for the special value a = a satisfies the following three relations
in which n 1s restricted to positive integral values and in which e represents a postiive
quantity which may be taken arbitrarily small:

Ma lim | o(n,a, t)dt = Gy; e=t=b—a ® >a),
n=00 <0

G, being a constant (independent of t).

(ID)s Relation (II) of § 51 s satisfied whena = aand 0 =t <.

11D, |le(n,a,t)|<B; e=t=b—a,

B being a constant independent of n and t.

Also, let f(x) be any function which satisfies condition (A) of § 51 and is such
that it has limited total fluctuation in an arbitrarily small neighborhood at the right
of the point z = a.

Then we shall have

lim | f(@)¢(n, a, z — a)dz = G1f(a + 0).

THEOREM VI. Let ¢o(n, a, t) be a function of the real variables n, a, t which,
when considered for the special value a = b satisfies the following three relations in
which n 1s restricted to positive integral values and in which e represents a posttive
quantity which may be taken arbitraridy small:

@, lim | ¢(n, b, t)dt = — Gq; a—b=t=—¢ ® > a),
=0 0

G being a constant (independent of t).
(II)s Relation (II) of § 51 s satisfied whena = band — e =t = 0.
(III), lo(n, b,8)|]<B; a—b=t=-—c¢

B betng a constant independent of both n and t.

Also, let f(x) be any function which satisfies condition (A) of § 51 and is such
that it has limited total fluctuation in an arbitrarily small neighborhood at the left
of the point z = b.

Then we shall have

lim bf(:r)¢p(n, b, z — b)dx = G: f(b — 0).

TaeoreM VII. Let o(n, a, t) be a function satisfying relations (I), and (II1),
of Theorem V but, instead of (II)a, the following:

(I1)s' Relation (II)' of § 54 13 satisfied when a = a, it being understood that
the integration there appearing is then taken from O to e instead of from — e to e.
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Also, let f(x) be any function which satisfies condition (A) of § 51 and s such
that the limit f(a 4+ 0) exists.
Then we shall have

li_m ' f@)®(n, a, z — a)dz = G, f(a + 0),

where ® 13 defined by (30).

TeEOREM VIII. Let ¢(n, o, t) be a function satisfying relations (I), and
(I1I)s of Theorem VI but, instead of (1I)s, the following:

(II)y' Relation (II)’ of § 52 is satisfied when o = b, it being understood that the
integration there appearing is then taken from — e to 0 instead of from — € to €.

Also, let f(z) be any function which satisfies condition (A) of § 51 and s such
that the limit f(b — 0) exists.

Then we shall have

lim f fx)®(n, b, z — b)dx = Gy f(b — 0),

where ® 13 defined by (30).

The first of the Theorems V, VI results directly upon writing

@ = [ fe+oemani=( [+ [ )iatoemand >0

and then applying to each of the last two integrals the methods already used
in § 48 for the study of similar integrals.
Theorem VI likewise results upon writing

@ o = [ 50+ 00, b,0dt = [+ [ )16+ etm, b 0.

The proofs of Theorems VII and VIII being likewise readily supplied, are
suppressed.

56. We proceed to make certain observations which will prove useful in
applying the general theorems of §§ 51-55 to special integrals (27).

(1) If in applying Theorem I of § 51 it is found that for some special value
of ¢ different from zero, t = ¢, F 0 say, the function ¢(n, a, t) becomes infinite
or otherwise is of such a character that uncertainty arises concerning any one
of the relations (I), (II), (III) when ¢ = ¢,, then the theorem will still hold good
provided that it can be shown that the integral

1+§
If= ‘/‘:—f |f(a+ t)¢(n» a, t)ldts

where £ is arbitrarily small and > 0, approaches (n = o) uniformly the limit
zero for a < a' = a = b < b, or else is such that for the same values of a and
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for all (positive integral) values of n the same integral approaches uniformly
the limit zero as £ = 0.

An examination of the method used in proving Theorem I shows at once the
correctness of this remark. More generally, in case of uncertainty of any kind
in the behavior of f(a + t)o(n, a, ) for the valuet=# +0 (e—a<ti < b—oa),
it suffices for the existence of (28) and (29) that relations (I), (II), (III), (4)
and (B) (or in (29) the substitute for (B) there mentioned) shall be satisfied
throughout the two intervals @ —a=t=4—§¢), LW+ E=t=b—a)
(& arbitrarily small and positive) instead of throughout the whole interval (¢ — a,
b — a), provided merely that the expression I; above defined has either of the
properties just mentioned.

If the exceptional point is ¢, = a — « then, instead of the two intervals, we
have to consider the single one (¢ — a4+ ¢ =t = b — a), while instead of I;
as defined above, we shall have to consider the integral

—a+§
I = fj | fla + De(n, a, t)|de.

A corresponding statement may at once be supplied for the case in which the
exceptional point is ¢, = b — a.

In the case of two or more of the exceptional points f, (¢a —a=H =b — a)
the corresponding statements are readily supplied.

(2) The conditions demanded in Theorem II may be stated without reference
to the function ¢(n, «, t). Thus, it suffices (aside from the conditions upon
f(x)) that the function ®(n, «, t) shall satisfy relations (I) and (III) of Theorem I
together with (IT)’ of Theorem II.

This follows from the fact that the conditions placed upon ¢(n, a, t) in
Theorem II are there inserted merely that ®(n, o, t) may have the properties
just indicated, the latter being those upon which the proof in reality depends.

Similarly, in using Theorems VII and VIII the conditions stated relative to
¢(n, a, t), ¢(n, b, t) may be replaced by the same conditions referred to ®(n, a, t),
®(n, b, t).

(3) Assuming that relations (II), (III), (4) and (B) of Theorem I are satis-
fied, let us suppose that instead of relation (I) we have the following:!*

— 34+ x(a,t) when a—a=t=—c¢

I lim oqo(n.az,t)dt!={ 2+ x(a,t) when e=t=0b-— q,

n=q0
where x(q, ?) is any function of a and ¢ such that
(2) Having given an arbitrarily small positive quantity ¢, one may determine
a positive quantity ¢ dependent only upon ¢ such that

4 Ag in (I) of § 51, it is here to be understood that the convergence (n = «) is uniform
for the indicated values of a and ¢.
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gd=a=V,

—§(=t=¢.

|x(a, )| < ¢ when {

(b) The partial derivative dx/0t exists whenever ¢’ = a =V, a—a =t
= b — «a and for the same values of a and ¢ is such that

< D = constant independent of a and t.

Under these conditions it is easily seen that the function ¢(n, a, t) — dx/0t
comes to satisfy relations (I), (II) and (III) of the theorem of § 51 from which
it follows that for a fixed value of & such that &' = a = b’ we may write

- f f@) [%’f ].:,-.dx +lim | f@)e(n, @, z — a)dz _fle—0) -;— fa+0)

Moreover, if (instead of condition (B)) f(z) is continuous throughout the
interval @' = z = V', the end points z = a', z = ¥’ included, and has limited
total fluctuation throughout an interval (a;, b;) such that a < a1 <a' < ¥
< by < b, then for all values of « in (¢, b’) the equation will hold true uni-
formly, it being understood that the right member is then replaced by f(a).

Analogous remarks relative to Theorems (III), (V), (VI) are readily supplied.



III

TeHE CALcULUS OF RESIDUES AS APPLIED TO THE SERIES DEVELOPMENTS FOR
AN ARBITRARY FUNCTION.”® THE GENERAL PROBLEM OF STURM

57. A comparison of the developments occurring in mathematical physics
for a function f(z) of one real variable z shows that they are ordinarily of the form

® f f@)F(x)Hi(An, 2)dx F@)F(z)Hz (M, 2)d
Z HlQm Z) - b + H!(km :t) -
= f F(z)Hi*(\s, )dz f F(z)Ha*(\n, 2)dx
(33) * *
[ $@F @B, s
+ e + Hm(xm 3:) = ) ’
[ F@ B0 2z

where Hi(An, 2), Ho(\s, 2), - -+, Hyu(\n, ) are m functions of z and of a certain
parameter N which takes different values from term to term in (33) according to
some given law, and where F(z) is a function of z only which is finite throughout
the interval (a, b).

Thus in the case of a Fourier series we have m = 2, H,(\,, ) = sin nz,
Hy(\n, 2) = cosnz;anda = — m, b=, F(x) = 1. Again, in dealing with the
usual expansion of f(z) in terms of Bessel’s function of order zero, we have
m=1, HiQ\, ) = Jo(A\s, ), a = 0, b = 1, F(z) = z, N\, being one of the roots
of the transcendental equation Jo(x) = 0.

It is to the important developments (33) that we shall hereafter devote our
attention.

The first n terms of (33) when considered for any particular value of z such
as ¢ = a may evidently be put into the form

ff(x)¢(n, o, T — a)dx»
where

1 The calculus of residues was first applied by Cauchy to the study of infinite series, in
particular to Fourier series (cf. Prcarp, “Traité d’Analyse,” Vol. II, Chap. VI, § 9 et seg). Its
application to the general study of developments in terms of normal functions appears to have
been first made by Dint (cf. “Serie di Fourier, etc.,” §§ 61-64) upon whose investigations the
present § is based.

124
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(349) o —a) =3 5 Hih, o) ot OHOn2)
r=1 os=1 fF(x)H.QOﬂ z)dx

Upon referring to the theorems of §§ 51-55 it thus appears that in order to
show the summability or convergence of series (33) to the value

fla—0) + fla 4 0) f(a+0) + (b — 0)
2 or 2

Gif(a+0) or G.f(b—0)

according to the cases there considered it suffices to show that the conditions
specified for ¢(n, a, ) in the same theorems are present when

(35) o, t) = 3 S H,Ow ) LT OO at t)
o [ Fomzo, oa
Thus the integral
(36) f ‘p(n, a, t)dt,

which plays an important part in these theorems, becomes in the present case

f Fla+ OH.Ov, a + B)dt
@ [ ot ani=3 S H0,0 :
=i =i f FOHI O, )dt

58. Now, the values A\;, N2, N3, + -+, \a, --- of the parameter N are usually
given as the roots (or part of the roots) of some transcendental equation u(z) = 0
where u(2) is a function of the complex variable z which is analytic throughout
all finite portions of the z plane. Thus in the case of Fourier’s series we have
u(z) = sin 7z and in the above mentioned case of the expansion in Bessel’s
function of order zero we have u(z) = Jo(z). Moreover, these roots, when
considered as zeros of the function u(2) are ordinarily zeros of the first order and
we shall suppose this to be the case in what follows.

Then the function w(z) = 1/u(z) will be analytic throughout the finite 2
plane with the exception of the points A;, Ng, s, - -+, Aa, - -+, Where it will have
poles of the first order and, considering 6(z) to be any other function of 2 which
is analytic throughout the finite z-plane, we shall have, provided p is a positive
integer,

8(z)w?(2) (3 — Ma)? = B A” + [0(z)wP(x)(z — M)?li (2 — Ma) + - -+

(38) [O(z)w”(z) (2 — M)?
p— DI

i (5 — )7+ (@) (& — M),
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where A is the limit of w(2)(z — \,) as 3 = \, and w,(z) is a function of z which
is analytic in the neighborhood of the point z = A, and where

[0(=)w?(2)(z — M)7A,

indicates the value of the sth derivative of 8(z)w?(z)(z — \,)? at the point 2 = A,.
From (38) we have

004 | [B@wE)(E — M),
G—wapt T @oay T

[0(z)wP(z) (2 — M) PR
(z—M)@— 1!
and integrating in the positive direction about any closed contour C which

encloses the point 3 = A, but no other pole of w(z) we have by Cauchy’s integral
theorem

0(2)wP(z) =
(39)

+ + i (3),

/] ? - plp-1
(40) 57 J Sewriede = POTEE AW

If, therefore, we integrate about a closed contour C, which encloses the first n
of the points Aj, Az, N, - - - but no other poles of w(z) we shall have

) %ﬁ.f;_o(z)w?(z)dz = élo(z)w’g)(j T) !)\,.)P]{:

and hence also

< [0 14 —_ plp-1
(42) lim fc_ oeurerds = 3 2D E;)(f l)lxa) I

whenever either side of the same relation has a meaning.
In particular, when p = 1 and p = 2 we have respectively

) 5 . 9000 = S @@ @ - Ml
(44) v ). 006 = S 06 - ML
or, since
1
w(z)(z — M) = u(3)
z— M
1

)

w0+ (22 )M =M+ (325 )M N

[0G)w*(2)(z — M)A, = 0/ Qa) [P (Ma) (2 — Ma)’] + 00W)[w?(2) (z — Ma)’]a,

_ 00w _ 60wu"0w)
WO T WO
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relations (43) and (44) may be written in the form

1 6(2) 0(\»)
(45) o @ dz = § ;L'()—.._) ,16
6(z) 0m) 60U 0hn)
(46) 2-n u’(z)dz Z [ W) W) } '

It is desirable to note also that if in (46) we substitute 6(z)y(z) for 6(z) we
obtain

02 , _ Z { 0'An)¥An)

VO ) — Y0 (hn)
20 0e) + o0 }

2m. u’(z) = u'(\,)?
so that if \V(X,.)u' M) — \P()\,.)u' '\») = 0 we shall have
@7) 6(2) @) b zo'Qu)W()\n) )

2m u’(z) ol U2

59. We proceed to apply the results in (45) and (47) to the sum (37) which
defines the integral (36) whose properties are desired in order to investigate the
convergence of (33).

Let us suppose that for the given value of @ we can construct a function
0(z) which shall be analytic throughout the finite 2 plane and such that its value
at the points Ay, Az, - -+, Mg, - - - shall be given by the equation

o HOw @) [ Fla+ OHiOm o+ i

(48) 00 = 2. 5 u'(Nn).
=i [ Fom20m, it
As a result of (45) we shall then have
¢ 6(z)
(49) j(; o(n, a, t)dt = . 1) —dz.

If, again, we can construct a function 6(2) analytic throughout the finite plane
and subject to the single restriction

o B, ) [ Fla+ OH.Qm, o+ 0
(50) 00 =2 s
= o) f FOHm, 1)t

where ¥(2) is any function of z analytic throughout the finite z plane and such
that ¢ QA)u'A\n) = Y(Aa)u”’(\) then, upon applying (47) we shall have

w' M)

v

(51) j; o(n, a, t)dt = 2%1 82)¥ (=) da.

Cy u*(z)
16 Cf. Chapter I, formula (30).
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It thus appears that by means of (49) and (51)!7 the discussion of (37) may
sometimes be transferred to that of an integral of a complex variable z. This
will be the case in the special developments to be considered in what follows.

60. We now proceed to examine the series (33) in some of its more important
cases—viz., those related to the general problem of STurm.'®* Here we have
m = 1 and, representing by H(\., z) the single function H;(\s, ), we have by
hypothesis

(52) j'b F@)HMn, 2)HM\n, x)dxz = 0 when n + m.

Moreover, when x is taken between a and b (¢ and b included) the function
H(z, z) is assumed to be analytic in z throughout the finite z plane and real when
2 is real; also to be such that when z has any one of the values N\j, Nz, =<+, Ag, +++
it is a solution of a certain linear differential equation of the form

69 2(k@ED)+ Fere) + R@HE 2 =0,

where K(z), F(x) and Fy(x) are functions of z only, while »(z) is a function of 2
only.
In such cases the developments (33) assume the form

54 > al0n2),
where -

[ f@F@HO, 2
(55) gn = °

- f F@H0, 2)dz

We first proceed to note certain general consequences which flow from the
above restrictions upon H(z, z).
From (53) we have

66 o (k@¥8=D) 4 (F@pow + Fi@)HOm ) = 0,

17 It is to be observed that if in (49) the function 6(z) has singular points within C the formula
continues true provided that the sum of the residues of the right integrand at such points be
subtracted from the second member. Similar remarks evidently apply in (51) if 6(z)¢(z) has
singular points within C,.

18 Cf, Din1, “Serie di Fourier, etc.,”” §§90-96. The problem here presented has been the
subject of numerous and extensive researches in recent years, but usually under the assumption
(not here introduced) that the differential equation (53) in terms of whose solutions the proposed
development is to be made, shall have no singular points within the (closed) interval (a, b) for
which the same development is to hold. But this assumption unfortunately rules out some of
the most important special developments, such as those in terms of Bessel functions and Legendre
functions. For summary remarks upon the more recent researches of this character, see BOCHER's
address before the International Congress of Mathematicians at Cambridge in August, 1912, § 11.
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57) (K( y 200w 2) PHE2) 1 (P10 + Fi@)HOw 2) = 0.

Hence, after multiplying both members of (56) by H(\s, ) and both members
of (57) by H(\m, «) and subtracting, we obtain

F@) {y(Aa) — v(Am) } HAm, ) H (s, 2)

(58) -2 { K@) [ w2 20D _ o, ) 9H0w 2 :c)] }
and therefore
j; F(2)H M\, 2)HO, 2)dz = m { K@) [ Hon, 28 (;;., z)

— HQ\n, 2) a—Hg‘;’ "”)] }b

Thus, in order that (52) may be satisfied it suffices that the roots \j, Az, Ag, - -+
be so chosen that

K0 [ 20w 92022 po,, 920D |
59)
- K@ [ How 9 2022 _ po, 202 2] _,

provided m + n. Moreover, among the different ways in which this relation
may exist is that of supposing that for every value of n we have the following
two equations simultaneously:

K(z)‘W— WHOm 2) =0 when z=a,
©0) AHO\w, 2)
QX 0D _ O, 1) = 0 when z=b,

k and B’ being any real constants, including the limiting values A = =+ o,
k" = 4 o corresponding to which the same equations become H(\n, a) = 0
and H(\,, b) = 0 respectively. We shall hereafter confine our attention to the
cases in which relations (60) are satisfied. Furthermore, if K(a) % 0, K(b) % 0,
we shall suppose that the transcendental equation %(z) = 0 whose roots deter-

mine the quantities \;, Ng, A3, - -+ is taken in the one or the other of the two
following manners:

(61) ue) = [ Ko o2 - v o | =

(62) u(z) = [K( )aH @2 _ wH(s, z)]b =0

10
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thus rendering one of the two relations (60) satisfied at once. Similarly, if
K(a) = 0, K(b) # 0 we shall use (62). In this case it is to be observed that we
have merely to place & = 0 (u(z) having been chosen as indicated) to have
equations (60) satisfied whatever the solution H(z, z) of (53) chosen to be used
in (54). Likewise, when K(a) + 0, K(b) = 0 we shall use (61) in which case
the solution H(z, z) of (63) to be used in (54) may be chosen arbitrarily. Finally,
if K(a) = 0, K(b) = 0 the equation u(z) = 0 may be taken arbitrarily together
with the solution H(z, ) without destroying the coexistence of (60).

61. We add that if the solution H(z, z) considered as a function of the two
variables z and z is finite and continuous together with its first and second partial
derivatives: 0H[dx, 0H [0z, 8*H [029z for all real values of z such thata =2 =b
and for complex values of z in the neighborhood of each of the points z = A,,
and if the equation (61) (%’ finite or infinite) is satisfied tdentically for all values
of z in these regions, then it is easy to evaluate each of the integrals

b
(63) f F(z)H*(\s, z)d2,

which appear in the coefficients ¢, of the series (54).
In fact, if we change A\, to 2, as we may now do, and integrate from a to z
(a < z < b) we shall have by (58) and (61)

'z .
j; F@)H(z, z) H\,, x)dz = ——y(z) ! 70 | K(z) {H(z, x) 6___ H(\, 2)
— HQ\,, 2) (az,_) } I,

and this holds true for any value of z in the indicated regions.
Whence, upon allowing z to approach the value A, we obtain under the
present hypotheses '

f F@)H O, 2}z = %O\,.) [ @ {aHg‘,: 2) 2H0u, 2
2H (N, )

o))

where if desired A, may be changed to z for values of z in the indicated regions.
Passing now to the limit as z = b we obtain

AH (s, 2) dH(\s, )

64) f..b F@H O, iz = o [K(’”’ (o

-0 27552} ),

in which as above we may replace A, by z provided z has values in the indicated
regions.
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Finally, by use of the second of equations (60) we may write (64) in the
following form when # is finite:

(65) fp(x)yz()\mz)dx=y,—(;“)[}lo\,.,z){haH&:x) K()a’gl)‘(:;,x)}]

In like manner, if » = + © so that H(\,, b) = 0 then (64) may be written

6 [ Fomo, o= o[ koA Hon D]

62. Expressions (64), (65) and (66) thus enable us to find under special con-
ditions the value of the integral (63). Among the cases in which the same
special conditions cannot be satisfied, the following are to be especially noted.

If, as we have supposed, F(z) and H(\,, ) are real when z is such that
a =z =) and if in this interval F(x) does not change sign, then the integral
(63) cannot be equal to zero. Whence, under these conditions (64) cannot be
used if K(b) = 0 (h finite or infinite) or if

(67) HM\ay b) =0 (h finite)
or if
or (as appears from (65)) if
2
(69) [hgg%: 2 _ Ry T %) 1;1)‘(:3, %) ]b =0 (hfinite).

63. Returning then to the series (54) and assuming that the quantities
A1, Az, Ag, - - are taken as the positive roots of the equation (62) while the equa-
tion (61) shall be satisfied tdentically for all values (real or complex) of z in the
neighborhoods of the same values; assuming also that the partial derivatives of
H(z, z) exist and satisfy such other conditions as we have imposed in § 61, we
may say that unless K(b) = 0 or one of the conditions (67), (68) or (69) is satis-
fied, we shall have for such developments when # is finite

u(@) = [K( y 282 _ g, z)] ,

f F(z)H(\s, 2)dz = ’(M) [H(k.., ){,,GHO\M z)

*H(\, ) } ]
— K@) =5 9z Moz
On the other hand, if A = 4 o, we shall have
u(z) = H(z, b),

(70)
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(71) f F@H 0\, 2)dz = _(&3 [ K@H _(;;, z) ]b_

Upon applying formulas (49) and (51) we thus obtain the following general
results concerning the integrals (36) pertaining to the present developments:

(1) & finite. Formula (49) here gives
v(2)H(z, o) j " Fle+ 0HG, o + it

where R, represents the sum of the residues of the integrand at any singular points
which it may have within C, besides the points A, g, * « +, N4} ¢. €., besides those
points z = N\, within Cj, for which

(73) [K(a:) — - hH] = u(z) = 0.
Formula (51) here gives
(74) S omana =g [ TO¥OE g,
[K o hH ]»

where R, represents the sum of the residues of the integrand at any singular
points which it may have within C, besides those points z = A\, for which (73)
exists, where ¥/(2) is a function of z only such that ¢’ A\.)u'(A\s) — YAs)u”’N\s) = 0
and where 6(2) is to be so determined that

YO O H O, @) [ Flee+ DHOW, it
V() H(\a, )
(2) h = + . Formula (49) here gives

(75 0'Ma) = —

f, 1 f v'(2)H(z, o) f‘ Fla+4+ t)H(z, « + t)dt
@) [ oo it =5~ & — R,
o 2m Je, (KGH) H, b)

where R, represents the sum of the residues of the integrand at any singular
points which it may have within C, besides those points for which

H(z b) =u(z) = 0.
Formula (51) here gives

¢ 1 0(z)dz
n S o a i = oo [ G005 .
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where R, represents the sum of the residues of the integrand at any singular
points which it may have within C, besides those points for which

H(z,b) =u(z) =0,

where
VO ) — YO M) = 0
and where ‘
YOm0 HOw, @) [ Flar+ OHOw, o+
(78) o' 0h) = e :

vou (K53)



IV

THE SUMMABILITY AND CONVERGENCE OF IMPORTANT SPECIAL DEVELOPMENTS.
DEVELOPMENTS IN TERMS OF BESSEL FUNCTIONS, LEGENDRE
FuncTtions, ETC.

1. Certain Important Sine Developments.

64. As the simplest application of the preceding general results to well-
known developments in mathematical physics, we now turn to the development

(79) D gn Sin Az,
n=1
where )
A+ PP f .
=273 L 1)
(80) 4 M+ o+ 1D f(x) sin Mz dz
and where the quantities A, are the positive roots of the equation
(81) zcosz+ psinz =0,

p being a (real) constant  — 1.9
In this case H(z, ) = sin 2z so that the differential equation (53) becomes

(82) a”f,(:; D + 2H, 2) = 0,

Thus, we have K(z) = 1, F(z) = 1, F1(x) = 0 and, as appears from (80), a = 0,
b= 1.
Moreover, equation (61) becomes satisfied tdentically for all values of z if
we place A’ = oo, while equation (62) becomes (81) if we place 2 = — p.
Considering then that, in the notation of § 60, we here have

u(z) = z2sinz+ psinz
and noting that the solution sin zz of (82) is one to which the general results
obtained in §§ 61, 63 apply, we may write by use of (64) and (81),

f‘,2 dz_l[asinzzc?_sxilix_. a’sinzx]
|, SR =52 "o 0z M ® 5wz |,

in2
=%[zcos’z—sinzcosz+zsin’z] =§l;—z,z[z’+p(p+ 1]

19 It will be noted that this form of development is the one required, for example, in the
problem of the cooling of a sphere in air at temperature zero. Cf. Byerry’s Fourier series (Boston,

1895), Chap. IV, § 67.
) P 184
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and henze . .
j; sin? A,z dz = 81;)";‘” a2 + p(p + 1)]
or, since \
.
. sinthe = 3T F
we may write . 4 p(p 4 1)
. _ p\p
j; sin? \pzdz = 04

Thus it appears in the first place that the coefficients g, as calculated by (55)
agree with the given values (80).

Now, .
u'(z) = —zsing+ cosz+ pcosz= — zsinz+ (1+P)u(z)——f—m—n—z,
u'’(z) = —sing — gcos 3 — sinz — psinz = — [2 sin z + u(z)],

and hence .

, _ sin \,
(83) ' { wa) = — 5~ D'+ ple+ 1),

w'(\y) = — 28in A,

so that ’

g A

2 1w

(84) j(: sin? Mz dz ST P D"

Let us now avail ourselves of formula (77).2° In order to do this we are
first to determine the function ¥(z) according to the condition

Y M)u' Aa) — Y)u’(\s) = 0.
A possible choice of ¥(z) is ¥(z) = z* + p(p + 1) since from (83) we have
u’l(xn) _ 2k1|
W) M4+ 1)

Assuming that ¥(z) has been chosen in this manner, we now have to deter-
mine a function 6(2) according to the condition (78) which, by means of (84)
becomes in the present instance

(]
sin )»,.af sin M(a + ¢)dt
0
Y(\»)

0') = 2[\2 + p(p + 1)]

(]
= 2 sin har f sin M(a + f)dt.
0

20 D1NT has shown through an elaborate investigation that this formula will always lead to de-
cisive results whenever the solution H(z, z) has the special form H (zz); that is, when the variables
z and z enter only through their product. (Cf. “Serie di Fourier, etc.,” §§ 97-109.) The well-
known developments in terms of Bessel functions form a special class of this kind.
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Hence, let us take 6(3) such that
¢ (]
0'(z) = 2 sin 2 f sin z(a + t)dt = f [cos &z — cos (2 + t)]dt.
[ (1}

In particular, let us take

0(z) = j: j: [cos &z — cos (2a + 1)z]dzdt = j: [Sh; fa_ sinz((x2a+-|; t)z] dt.

Formula (77) thus becomes

¢ _ 1  24+p(p+1) (*[sintz sin Qa+t)z
»[o“p(n,a,t)dt_2ﬂ'i C.[zcosz+psinz]2£[ t - 2a+t ]Mz

_1r 14 wi(z) sin #z
(85) T 2m j.; dt ¢ [cos z + ws(2) sin 2] ¢
Lf‘ dt [1 4+ wi(2)] sin (2 + #)z

T2mJ, 20+t c. [cos z 4+ wi(2) sin z]? ’

where the contour C, is so taken as to inclose the roots A, e, - -+, A\, and only
these roots of the equation %(z) = 0 and where, in the last two integrals we have
placed for simplicity
plp+1)
22 ’

dz

wi(a) = w(@) =B

We observe at this point that in applying Theorems I and II of §§ 51, 52
to the function ¢(n, a, t) of the present development, the values of a and ¢ with
which we shall b: concerned are such that

0<a<a<¥<1,
(86)

—a=t=1-—aq,

0<d<a=2a+t=14+a<l+b <2

Returning then to (85), let us take as the contour C, the rectangle formed in
the z plane (z = z + 1y) by thelinesz = 2+ 4,z = 2 — 25,2 = 1y, 2 = k + 1y;
j being any positive quantity arbitrarily large and % being any positive quantity
lying between A, and Any1. Now, the function appearing in the integrand of
(85) is an odd function of z which remains finite in the neighborhood of the
point z = 0 since p + — 1. Whence, the portion of the integral in question due
to integration over the y-axis is equal to zero. Upon the sides which are parallel
to the z-axis we have dz = dz. Whence, considering first the side upon which
z = z + j the last integral of (85) extended over this side becomes

Lf‘itf"{1+wl}{sin Az cosh Aj+ 1 cos Ax sinh Aj}da:
—27r1: 0 A 0 D1D2 ’

where 4 = 2a+ ¢, D, = cos  cosh j — ¢ sin z sinh j + wy, D, = sin z cosh j
+ 4 cos z sinh ;.
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Now, the functions w; = w1(3), wes = we(3) are each less in absolute value
than a constant (independent of z) provided |z|> @ = fized number > 0.
Thus, we have but to make use of the well-known properties of the hyperbolic
functions to see that if we place j = + o the expression above will approach
uniformly the limit zero for all « and ¢ satisfying relations (86).

Similarly, we reach the same result for the last integral of (85) when extended
over the side upon which z = z — ;.

Turning now to the first integral in the second member of (85) extended over
the sides upon which z = z =+ %j, we note that

infz sintx . inh ¢
E:— = smt cosh #j + 7 cos tx§lt—"
and hence,
in £z . e . .
s% = z cos Hx cosh ¢j & 17 cos &z sinh &7,

where ¢; and £, are values lying between 0 and ¢. Moreover, for all values of ¢
under consideration in (86) we have |{|< 1 so that if we place j = + » as
before, the first integral in the second member of (85), like its last integral, will
approach uniformly the limit zero for all values of o and ¢ concerned in (86).

We turn then to the consideration of the last member of (85) when extended
over the side of the rectangle C, which is parallel to the y-axis. Here we have
2 = k + 1y, dz = idy and, having taken j = + o, we see from what has just
been said that for all values of « and ¢ in (86) this member reduces to

lf‘dtf“ 14 o sintzd
2x Jo _o[cos 2+ ws sinz]2 ¢ Y

1 dt * {1 4+ w1} sin 2a + #)z
—21r.£2a+t.£., [cos z + ws sin 2P dy,

in which it is understood that z = k + 1y.

Now, it suffices for our purpose to examine the behavior of (87) as k = «
and we may take for £ any number which, at least for all values of n greater
than some fixed value, increases indefinitely with n without at any time being a
root of the equation u(z) = 0; 1. e., of the equation

@87

E=cosz+ wssinz = 0.
Thus, we may take k¥ = nr, in which case

E? = [cos (nx + ty) + wq sin (nx + ty)]> = cosh? y[1 + 4w, tanh y]?

and hence
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1 1 . , 3 tanh® y 4 24w, tanh? y }
) Ez_cosh’y{1 — 2wy tanh y — oy 1+ 24w, tanh y — w,? tanh® y
88
_ 1 tanh y, o }
_cosh’y{ T ta
where, upon recalling the form of ws(z), we have ¥ = — 2¢p and therefore inde-

pendent of z, while § depends upon z but has a modulus less than a certain fixed
number M for all values of |z|> a fixed number k.
Thus expression (87) becomes

1 @ ¥ 8:\ siniz
2—Tfo dt[ﬁ(1+-z-tanhy+z-;)tcosh, dy

1 dt * sin (2a + #)3
2_1-_[2a+t.£,<1+ 5 tanh +z2) cosh? y dy,

1+ tanh y+ 2= [1+w.1[1+}tanhy+§;],

where

so that §; like & has a modulus less than some constant M; when |z| > a fized
number = k.

Considering now the terms in (89) which have 2? in their denominator, we see
that for all values of a and ¢ in (86) these terms approach uniformly the limit zero
as k = «©, Thus, since

sin (2a + #)z
cosh? y

I Qo+ )k ——

cosh (2o + t)y
cosh’

(90) .
sinh 2a + $)y

+ [cos 2a + )k cosh?

’

where 0 < @’ =2a+ ¢t =1+ b’ < 2 we have, however great |z| may be,
sin (ar+ 2

cosh? y <2
so that
= 61 sin (2a + t)z 1 dt ® dy Ml
f 2a+tf cosh? y dy\<21r o 2M h B+
In like manner, noting that
sintz_ sin t cosh ty 4 ¢ cos th > nh fy

(91) t t
= k cos tik cosh ty 4+ iycos tk cosh &k,

.where #; and ?, lie between 0 and ¢, and recalling that for all values of ¢ under
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consideration we have |t| < 1, we may write
1 o sin 2 M M, [‘ f ij.lﬂ
211:‘“ | Freay ¥ =T ¢ e T
Similarly it appears that the derivative with respect to ¢ of each of the same

terms of (89) has the properties just indicated.
Thus (89) reduces to the form

1 ® v(k — ty) )sin kt cosh ty
2rfdtj: (1+ B+ tanh y t cosh? y dy

vk =), . cos ktsinhty
+2 fdtf (l+ 24 2 tanh ) t cosh? y dy

92) — 1 dt o (1 + ’yg:-*- ;.:I) tanh )sm (2a + t)k cosh (2a + t)yd

o 200+ 1) _, cosh? y
v(k — 1) cos (2a+ t)k sinh (2a+ &)y
21rf2a+tf (l+ B+ tanh ) cosh?y dy
+ A(a, i k):

where, for all values of a and ¢ under consideration, A(e, ¢, k) and dA(a, ¢, k)/dt
converge uniformly to zero when k = «. Or, expanding and dropping integrals
which vanish identically since they are relative to odd functions of 3, (92) assumes
the form

1 ('sin ktdtf"cosh tyd *sin ,ddtf y tanh y cosh ty
2rJ, _ocosh? y o (B + 3 cosh?y
e [ k tanh y smh ly
+ 2r f cos ktdtf (X 4+ y®tcosh?y dy
1 ('sin 2a + 8k f cosh (2a + #)y
(93) T2y 22+t a " cosh’y dy
f sin (2a+t)kdtf tanh y cosh (2a+t)yd
+21r 20+t B+ ¥ . cosh®y

o ‘cos (20 + )k ® k tanh ysinh Qa4 t)y
“2rdy  2a+t dt[.,’t:’ + cosh? y dy+ Aa, t, B).

We proceed to consider separately the six integrals here appearing.
The first may be put into the form

H(O) (fsinkt,

27 J, sin t

5 [ 10 - o 2EE g,

(94) L= sin t
where

sin t ® cosh ty
h = o cosh? y
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Whence, if ¢t > 0 the limit of the first term in the last member as k = o is
f1(0)/4 (cf. Appendix, Lemma II). But

f1(0)=f"J'"——y=2,

2
_ Cosh

and hence as k = o the term just mentioned approaches the limit § when ¢ > 0.
Again, by breaking up the integration in the last term of (94) into that from
t = 0 to t = n plus that from ¢ = 5 to ¢ = ¢ (y arbitrarily small and > 0) and
observing that the function f,(¢) has limited total fluctuation in the neighborhood
of the point ¢ = 0, it follows that the same term approaches the limit zero as
k = o (see Appendix, Lemmas I, III).
Likewise, if ¢ < 0 we obtain lim IL=-1.

; The second and third integralg of (93) may be reduced respectively to the
orms

I

*sin ktdtf 3 ytanhycosh ly
2-n-k kt B4 cosh? y

R k*  y tanh y cosh iy
A j: cos ktdt f_ ey cosh? y dy,

where ¢, is a quantity lying between 0 and ¢. Since we have always

k2 sin kt
k’+y’—1 Tkt <1

it thus appears that the limit approached by each of these integrals as k = =
is equal to zero.

In order to study the fourth integral of (93) let us make therein the substi-
tution 2a + t = 2 — 7. Since k = nr the integral in question becomes

1 sin kr dr f cosh (2 — r)y

(95) — 5

2r Joy-ay2 — 7

in which it is to be noted that for all values of @ and ¢ in (86) the quantity 7 is
positive (1 — b’ <1< 2 —4d').
The expression (95) is of the form

1
(9:) o m_‘)fx( ) pr dr,
where

sm T [®cos (2— 1)y
©7) hm) = r.[,, cosh? y d

We have now but to apply Lemma I of the Appendix to the integral (96)
in order to see that for all values of a and ¢ with which we are concerned the
expression (96) converges uniformly to zero when k = oo.
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Finally, the fifth and sixth integrals of (93) are readily seen to approach the
limit zero when k¥ = o and the convergence is uniform for all values of a and ¢
entering into (86), since we have always |2a + ¢| < 2.

In summary, then, the present function ¢(n, a, f) satisfies relation (I) of
Theorem I, § 51, it being understood that we here have a = 0, b = 1.

We turn therefore to a consideration of relation (II) of the same Theorem.
This relation is at once seen to be satisfied since, as just shown, all the integrals
of (93) converge uniformly to zero for all @ and ¢ under consideration except the
first, and this integral satisfies relation (II) of the theorem by virtue of Lemma ITI
of the Appendix.

Again, relation (III) of Theorem I, § 51 is readily seen to be satisfied in
the present instance upon noting that the function ¢(n, a, t) is here equal to the
derivative with respect to ¢ of the expression (93) and that dA(a, ¢, k)/dt con-
verges uniformly to zero, as already pointed out, when k¥ = o.

Before summarizing these results into a theorem respecting the series (79)
we turn to consider the application which may be made in the present instance
of the general Theorem II of § 52, thus arriving at certain results concerning the
summability of the same series. In view of the existence already demonstrated
of relations (I) and (III) of § 51 it will here suffice to consider whether relation
(ITI)’ of § 52 is here fulfilled. Moreover, the properties of the integral

]
(98) f |®(n, a, t)|dt; —€e=t=c¢
0

of the present development are readily obtained from the expression (93). In
fact, in order to be assured of the desired properties of (98), it suffices to show
that each of the seven terms of (93) when affected by the operation

1 L

P>
has these properties, it being understood that absolute values are employed under
each integral sign and in the integrals which constitute the expression A(e, ¢, k).
For the sake of simplicity and also because the indicated studies are readily
carried out, though the forms in (93) are complicated, we shall here suppress the
details, noting simply that the desired result follows in each case when we make
use of Lemmas IV and V of the Appendix and make use also of (90) and (91)
in the study of

1 > Ay t, k).
N n=o

We turn then to note the application of Theorem VI of § 55 to the present
development in order to ascertain the limit approached by the series (79) when
z=1.
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For this purpose we first observe that the integral

j: o(n, 1, t)dt

is here obtained by placing & = 1 in the expression (93). In the resulting new
expression the first three integrals, when considered for values of ¢ such that
— 1 =t = — e are readily seen to have the properties already obtained for the
corresponding integrals for the case 0 < o < 1 (in which case — 1 < ¢ instead of
—-1=1.

The fourth term, however, does not approach the limit zero in case a = 1
since the lower limit of integration in (95) is now equal to zero so that the reason-
ing before employed can not be used. The resulting integral now assumes the
character of the first integral of (93) and if treated in the manner naturally
suggested by the analysis of that integral we find directly that for the values of 7
under consideration the limit approached as k = « is — f1(0)/4 where f1(0)
is to be determined from (97). In order to find the value of f;(0) it is desirable
to make first the following general observation:

If ¢(y) is a function of the real variable y which, together with its first deriva-
tive, is finite for all values of y then, for any number 6 such that |6]| < 2 we shall
have

cosh 0y f ,,.« Sinh 0y
©9) f o) cosh? y 4— 6 ¢'®) cosh? y
2 @ , . cosh 0y sinh y cosh 0y
tioe) YW iy WTE- ozf W) cosht y
In fact, integrating once by parts we obtain
" o) S0 4 f Sinh 6y ,
(100) [, o(¥) cosh? y ] cosh2 dy
smh sinh Oy sinh y P
Of " cosh’y Y
and in like manner we may obtain also
f@ . )smh fy sinh y y 1 f cosh cosh 6y sinh y i
o cosh® y = cosh® y
101
(o) f @ cosh Gy _3 f cosh 0y
0 2(¥) Cosh? 4 cosh? y cosh‘ dy-
Whence, upon combining (100) and (101) we obtain
cosh Gy f 1. Sinh By f 1. cosh 8y sinh 3 Y4
j: e(®) cosh? y =70 ¢' @) cosh? y dy — 6? OO sty cosh? y dy

4 cosh 0y 6 cosh 6y
+ ( .[.. o) cosh? ydy - 0’[, () cosh* y dy
and this equation at once gives (99).
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Similarly, we may find an analogous form for the integral

® inh 6
[ ow iy,

® cosh? y

Thus, for the function f1(0) where fi(7) is defined by (73) we may write

_ . sinT ®cosh 2—7)y, . 6 sin 7 ® cosh (2—17)y ]
£10) = El=n.,12 — rj:,, cosh? y dy= 1,1:.1 [1-(4—12)(2-—1-) o coshty d

_3 [®cosh2y 3 ® dy “tanh?y )
T4 _,,cosh‘ydy—tl(.[,cosh’y-'- _,,cosh’ydy

- g([tanh 4% + % [tanh® y]°_°.,) =2

As to the fifth integral of (93) when a = 1, the values of ¢ to be considered
are as before those for which 0 = ¢ = — 1 and for these we have

|20+ t|=|2+t]=2

instead of |2 4 t|< 2. The reasoning employed in studying the corresponding
integral when 0 < a < 1 can not therefore be employed. However, if we break
up the integral in question into that from ¢ = 0 to ¢ = ¢ plus that from ¢ = &
to t = t (e; arbitrarily small but > 0) the last of the two integrals thus obtained
will have the limit zero as k = o since for the values of ¢ concerned we have
|2a + t| = 2 — &1 < 2; while the first of the same integrals may be made arbi-
trarily small with ¢; since by placing

tanh y cosh (2+ )y
cosh? y -

cosh (2 + )y _
cosh? y H ¢(y) = tanh y

e(y)

and applying (99) we see that the integral

® ¥ cosh 2+ )y
.[., B+ y’¢(y) cosh’y dy

remains less in absolute value than a constant independent of ¢, for all values of ¢
such that — ¢, =t = 0.

Similarly, when o = 1 the sixth term of (93) may be neglected in the limit
as k = oo,

Thus condition (I), of Theorem VI, § 55, becomes satisfied in which in the
present instance we have G = — 3 —3=—1(a=1,a=0,b=1).

Relations (II), and (III), of § 55 as well as (II),’ are now readily seen to be
satisfied (as in the studies already carried out in connection with (93)) so that
by virtue of the general theorems of §§ 51-55 we reach in summary the following
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TaEOREM. If f(2) remains finite throughout the interval (0, 1) with the possible
exception of a finite number of points and is such that the integral

1
(102 [ @z
0
exists, then the series
(103) Z‘, gn SIN N2
in which B
M2+ p?

1
q,=2m£f(z)sinhm; p = constant + — 1,

An being the nth positive root of the equation
zcos 2+ psinz = 0,

will converge at any point z (0 < z < 1) in the arbitrarily small neighborhood of
whach f(x) has limited total fluctuation, and the sum will be

3 [fz — 0) + f(= + 0)).

Moreover, the convergence will be uniform to the limit f(z) throughout any in-
terval (a’, b’) enclosed within a second interval (ay, b)) such that 0 < a; < a’' < &’
< by < 1 provided that f(x) i3 continuous throughout (a’, b’) inclusive of the end
points z = a', x = b’ and has limited total fluctuation throughout (a,, by).

Also, if f(x) remains finite throughout the interval (0, 1) with the possible ex-
ception of a finite number of points and 13 such that the integral (102) exists, then
the series (103) will be summable (r = 1) at any point (0 < =z < 1) at which the
limits f(x — 0), f(x + 0) exist and the sum will be

3 [fiz — 0) + f(z + 0)].

Moreover, the summability will be uniform (§ 45) to the limit f(x) throughout
any interval (a’, b’) such that 0 < @’ < b’ < 1 provided that at all points within .
(a’, b'), inclusive of the end points x = a’, x = b, the function f(z) is continuous.

Under the same conditions for f(x) when constdered throughout the whole interval
(0, 1), the series (103), when considered for the value z = 1, will converge to the limat
f(1 — 0) provided f(z) i3 of limited total fluctuation in the neighborhood at the left
of the point x = 1 and will be summable (r = 1) to the limit f(1 — 0) whenever this
limit exists.

65. It may be observed that in the excluded case for which p = — 1 the
methods which we have followed may be readily altered so as to yield corre-
sponding results. In this case the integrand of (85) has a pole at the point
2 = 0 so that this point should be excluded from the contour C,. Supposing
this to have been accomplished by means of a small semicircle extending to the
right of 2 = 0, we may then take as Cy the resulting contour in part rectangular
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and in part semicircular. If the integrations be now carried out as before over
the respective portions of C,, that arising from the semicircle will be equal to
— 4r where r represents the residue of the integrand of (85) corresponding to
the pole 2 = 0. Except for this auxiliary term, the reductions are the same as
before, so that in applying the general theorems of §§ 51-55 we encounter an
application of the remark (3) in § 56. A similar instance will occur in connec-
tion with the developments in terms of Bessel functions, to which we now turn,
and in that case we shall elaborate the consequences at some length, though
such studies will be omitted for the sake of brevity in connection with the present
series (103).

2. The Developments in Terms of Bessel Functions.

66. As a second application of the general results obtained in §§ 51-55 we
shall now consider certain developments in terms of the function P,(z) defined
by the equation 6

(2
P(z) = 5~
where J,(z) represents Bessel’s function of order ». The developments in
question are closely related to the well known developments for an arbitrary
function in terms of Bessel functions and at once yield, as we shall show, results
of considerable generality concerning the summability and convergence of the
latter.
For the function P,(z) as thus defined, we have, when » $ negative integer,

J,(22) 1 (22) (z2)*

w00 P,(zx) = ) m[l_ 22y + 1)+2‘- 210+ 1+ 2)

_ (z2)° ]
FIOFOeFIeFD T
while the equation (53) becomes

3 (a:’*” P——:?(z"‘))
x
N o 7 -t =
9z + 2221 P,(3x) = 0
or, placing for brevity P,(2z) = P,
9?P JoP
(105) "’55,7"' v 4+ 1)3_x+ 2zP = 0.

Taking a = 0, b = 1, the development (54) in terms of the functions P,(A\u) -
becomes

(106) > aP.0w2)

11
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where

[ #1@P. 0wtz
f l.’L‘”‘“P,’(X,.:c)d:l: '

(107) gn =
Equations (60) become

Faar g—P,()\,.x) — KFP,(\2x) =0 when z=0,

z
(108) P
x""’"&P,()\,.a:) — hP,(\nz) = 0 when z=1.

Of these the first is seen to be satisfied identically for all values of z if we place
K = 0 and assume » > — 1, while the second gives as the equation u(z) = 0
(cf. § 64) of the present developments,

dP,(z)

uz) = 2 ——hP(z)—O

We may therefore apply (64) and write

[aP o°P _ , o°P ]

»+1PD 2 —_
f e P Max)de = ol 57 55~ P oaaz |y

or since
OP_10P O _z P
9z =z9z’ 0x0z z 92’
we have
1 oP 1_40P %P
P 2 - ol
jo‘z’ P} (zz)dz [ (az) xPaz zPazz]
(109) ) P
= 2—[ ( ) + 2vP + zP’]
¥4 =
by (105).

Thus, if 2 = = « so that u(z) becomes simply P,(z), we have

1 a 2 ,
(110) [fepaoniz =3 (Zr.0)_ = twour
and, since we then have by (105),
IIW) u()‘") _2_1_-_" ——1

W) PO A

it appears that if we wish to apply (77) in the study of the function ¢(n, o, ?)
of the present developments we may take at once y(z) = 1/2*+! and 6(z) such that

(111) 0'(z) = 22*11P(az) fo“ (a4 )P {(a + t)z}dt; P=P,
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On the other hand, if % be finite so that u(z) = 2P’(z) — hP(z), we shall
have by (109)
P2(\)

(12) [ 2P = 5

{h(2v + k) + M2},

Now, we have by (105)
u'(z) = z2P"(z) + (1 — B)P'(z) = — (2v + h)P'(z) — 2P(3),

W) = — (@ + HP"() — sP'(s) — P = 2T D&+ D

P'(z)

— 2P'(z) + v + k — 1)P(2).

Whence, P
w0 = = o (ko + B+ M),
w'ON) = P)f:‘;') (k2 + 1)(@v + B) + @ — DA,
so that -
YOS otk + B+ M)
f 2P\ 2)dz
W) _ L@+ D@+ D+ @D _ 2 + 1, o
W) M h@2v + k) + N2 h@2v + B) + N2’

Thus, in order to satisfy the conditions relative to ¥(z) in the present case
we should take it so that

V@ _ v+ 222

o) : ThFRF2
Let us therefore take
R@2v 4+ k) + 2

V() = 2

in which case it appears that we may take 6(z) as before, viz., such that equation
(111) is satisfied.
Now we have from (105)

+ 22*a?P(az) = 0

{ ar1OP(ea) aP(az) }

with a similar equation obtained by replacing a by a 4 ¢. Hence,
[(« + 2)* — ]2 P(az) P{(a + ?)z}

= 2[#(E2 pie+ a1 - D piy) ) .
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Placing for convenience a + ¢t = 8 and letting accents represent differentiation
with respect to z, we may therefore write

f " 21 P(az) P(Br)ds = %[P'(M)P(pz) — P'(B2) P(az)]
0

so that both when £ is finite and when infinite we may take

(113) 6(z) = 2221 fo ‘ Eiz—a,[P'(az)P(ﬂz) — P'(B2)P(ea)it.

Upon noting the analytic properties of the functions y(z) corresponding to
the two above mentioned cases and of the function 6(2), it appears, upon applying
(77) that the integral (36) of the present developments will be given by the ex-
pression

1 /M P’(a2) P(82) — P’'(Bz)P(az)
(114) ; A @:;zdt‘[;. I”(z) dz
or
¢ v+1
(115) 'nl'z A “B;ﬂz_—azdt A [—51%#—;;:]2[13'(@)1)(52) — P'(82)P(az)]dz

according as u(z) = P(2) or u(z) = zP'(z) — hP(z).
It is to be noted also that in the developments (106) we shall have by (110)
and (112)

I = 1—:72();72 fo f@)a*HPz)dz
or
2\,2 !
= [h@2v + by + MAPPOW) fo @)z HPMz)dz

according as the quantities A\;, Ny, - - - are the roots of P(z) = 0 or
2P'(z) — hP(z) = 0.

These results premised, let us now consider the rectangle in the z plane whose
vertices are the points 2 =1, 2=k + %, 2 = k — ¢j, 2 = — 4j, j being any
positive quantity arbitrarily large and & being any positive quantity lying be-
tween A\, and A,y1 where Ay, Ag, - - - represent the successive positive roots of the
equation P(z) = 0 or zP’(3) — hP(z) = 0 according as we are dealing with (114)
or (115). From the boundary of this rectangle let us exclude the point z = 0
by means of a small semicircle of radius » and let us now take the resulting
contour in part rectangular and in part semicircular as the contour of integration
Ch.

Now, the function appearing in the integrand of either (114) or (115) is an
odd function of z and hence the two portions of these integrals extended along
the y axis mutually destroy each other, while in either case the portion extended
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along the semicircle may be made arbitrarily small with » unless in (115) we
have k= 0. In this exceptional case the integrand of (115) has a pole of the
first order at the point z = 0 and hence, upon applying Cauchy’s integral the-
orem, the value of the contribution to (115) arising from the semicircle in question
becomes

— @ +2) fo ‘s = g — e,

In order to discuss the remaining portions of the integrals (114) and (115)
we shall now make use of the following established result:2

‘“ Representing by J,(z) Bessel’s function of order » we shall have when
v > — % and z has any value except zero whose real part is positive or zero

(116) J'(z) = - % [S,(z)e““[("‘”"’" —_ Sz(z)e—ﬂl—[ﬂv—l)lﬂr)]’
3
where .
1 0 T i_ v—
50 =gl o (1-5) @
(117)

and where, when |z| is sufficiently large, these expressions S; and S; may be
expanded into the forms
=t To+3i+n) 1

813 = XS DT0 + 3 = n) (= 2)°

o~ I'v+ 3+ n) 1
846 = X+ Do+ 3 = m Gar

in which m is any positive integer and in which the expressions 0,(z, ») and
O,(z, ) become infinitesimals of order as high as the mth when |z|= © and, at
least when » > + 4, possess first derivatives which as |z| = « become infinitesi-
mals of order as high as the (m 4 1)st.”

Placing — 7 = ¢~ "*® in (116) we obtain

+ el(z: V):
(118)

+ 62(zs ”)7

T(8) = = [Su(a)en) . (g)emsemteomie

V2rrz
Whence, upon expanding and making use of (104), we have

1 [{S;(z) + S2(2)} cos(z—?#r)

P.&) = oo o

(119)

+ {81(z) — S2(2)} sin (z B 21’2‘ 11)]’

1 Cf. H. WEBER, Math. Annalen, Vol. 37 (1890), pp. 404—416. The facts which we shall
state regarding the derivatives of 6,(z, ») and 64(z, ») are not explicitly obtained by WeBER, but
follow at once from his analysis.
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so that by (118) we may write when » > } and when the real part of z is positive
(or zero)

P,(2) = \E;,%,g)[ {1+ e(z, »)} cos (2_21:;{— lw)

(120)
+ ¢z, ) sin (z - 2”;" 1«)],

where the functions e(z, ») and {(3, ») become infinitesimals of at least the
second and first orders respectively as |2| = o« and possess first derivatives which
as |z| = o become infinitesimals of at least the third and second orders respec-
tively.

Moreover, by use of the relation P,(z) = (2v 4+ 2)P,41(2) — 2?P,42(2), we
may readily show that (120) holds true for all values of » for which P,(z) has a
meaning—. e., unless » is a negative integer.

Furthermore, since P’(z) = — zP,41(2) we see that unless » is a negative
integer we may write

P@) = — \2pam| (14 26 ) sin (s = 2 20)

(121) 9
+ 6(z, v) cos (z - Li——lr)]

where 7(z, ») and 6(z, ») have the properties mentioned above for ¢(z, ») and
t(z, v) respectively.

Equations (120) and (121) having been obtained, we return now to the dis-
cussion of (114) and (115) when the indicated integration is extended over
the portions of C, remaining after removing the semicircle of radius n and the
portions of the y axis. Placing for brevity

241 \/5
a=——m, Cc = 4>
4 T

we have by (120) and (121) for all values of z upon these portions of C,, unless
a=0o0rg=0,

(122) P(cz) = (Zz—)f——m[{l + €(az)} cos (az — a) + {(az) sin (az — a)],

(123) P'(az) = @z—)%nﬁ)[ {1+ n(az)} sin (ez — a) + 6(az) cos (az — a)),
(124) P(Bz) = W[u + €(B2)} cos (Bz — a) + £(z) sin (Bz — a)),

(125) P'(Bz) = @;;,%,,,)[ {1 4 n(B2)} sin (82 — @) + 6(Bz) cos (Bz — a)],
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and, excluding the case in which o = 0, we observe that in applying Theorem I
of § 51 to the integrals (114) and (115) in question the valuesof o, tand 8 = o + ¢
with which we shall be concerned are such that

0<a<a<id<l,
—a=t=1—a,
0<ad<a=a+p=1l14+a<l14+bt <2,

while in applying Theorems VI and VIII of § 55 for the case in which o = 1,
weshallhave — 1 =t=0,1=a+8=2.

However, when { = — o we have 8 = a4 ¢t = 0 so that expressions (114)
and (115) cannot be used for all the values of 8 with which we shall be concerned.
Let us therefore exclude for the present the valuet = — a from our investigations,

treating it later as one of the exceptional values of the type mentioned in remark
(1) of § 56. Thus, representing by £ an arbitrarily small positive quantity, we
proceed to study the integrals (114) and (115) for all values of «, ¢ and B satis-

fying the relations
0<d<a<id<l,

(126) —at+é{=t=1—gq,
0<ae<a<até=a+p=14+a<14+b <2

or
a=1,
(127 —14¢t=t=0,
' l1=a+p8=2

From (122), (123), (124) and (125) we find upon performing the indicated multi-
plications that

w1 v+(112)
1P (@) P(s) — P'@)Pea)) == o ©)

X [{ell + e(B2)][1 + n(az)] — BI(Bz){(az)} sin (az — a) cos (Bz — a)
— {B[1 + e(a2)][1 + 7(B2)] — ab(az)§(Bz)} sin (8z — a) cos (az — a)
+ {afl + n(a=)]$(B2) — B[1 + n(82)]§(az)} sin (az — a) sin (Bz — a)
+ {all + €(82)]0(az) — B[1 + €(az)]0(82)} cos (az — a) cos (8z — a)]

-— »+(1/2)
=mi—a,)(g) [4 sin (az — a) cos (Bz — a)

+ B sin (8z — a) cos (az — a) + C sin (ez — a) sin (83 — a)
+ D cos (az — a) cos (Bz — a)]
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-— 02 . B v+(1/2) B . .
2zz.~u@z —) ( ) [(4 — B) sin (@ — B)z+ (4 + B) sin (e + 8 — 2a)z

+ (C + D) cos (@ — B)z + (D — C) cos (@ + B — 2a)3],

where 4, B, C and D are used for brevity to denote the respective coefficients
given above of sin (az — a) cos (8z — a), etc.
Now, we may write

A=B=(+B1+m@), A+ B=(a—HB)1+ @)
C+D=(a—Pps(z), C— D= (a—P)p(a),

where, recalling the properties of the functions e(az), €(8z), etc., we see that for
all values of , ¢ and 8 in (126) and (127) and for all values of z now under con-
sideration the functions p;(z), p2(2), ps(z) and p«(z) are finite and vanish uni-
formly like 1/22 1/2%, 1/z and 1/z respectively as |z|= «. We note also that
these functions may if desired be put in the forms

€9

b d
@ =3 m@=3 nE="+3

p((z) = &+ 22

in which dy and f, depend only upon « and 8 and are finite for all values of
and B8 in (126) and (127) while by, co, €0 and go depend also upon z but for all
values of a and 8 under consideration and for all values of z under consideration
and such that |z| > @ = constant, are less in absolute value than certain con-
stants independent of @, 8 and z. For the same values of z we have also

P@z) = %(,,,)[1 + €(2)][cos (z — a) 4+ w(z) sin (z — a)]

2P'(5) = BPG) = ot | 1+ 1) + 2 16) | sin o — @) + ) eos (= ),

where

k
w(z) _ ;(Z) ;(z) _ 0(2) + ;[1 ':e(z)]
1 ’ :
@ 14 1() + 1@
Whence, upon recalling that « — 8 = — ¢, we see that whether we are dealing

with (114) or (115), the portions of the integral arising from the part C,’ of C,
now under discussion will be of the form

f ( )*H”” 1 4+ ¢i(z) sin tzd
2m c E? t *#

2mf( )"*“’”a i 5f, sin [(« +E€)z - 2a]dz
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(128) " E:;if'(g)ﬁ-(m)a & Bf qa(2) sin [(a + B)z — 2a]
2m f ( )v+(1/z)a =N q3(2) E;os &z s

»+1/2) q4(2) cos [(a + B)z — 2a]
21n f ( ) a + BJey E? %

where the functions ¢1(z), ¢2(3), gs(z) and ¢«(z) (like the functions pi(z), ps(2),
etc.) may be put into the forms b,/2%, ¢1/2% di/z + e1/z* and fi/z + g:1/2* respec-
tively and where

(129)

E = cos (2 — a) + w(3) sin (z — a),
E = sin (z — a) + w(3) cos (z — a),

according as we are dealing with (114) or (115).

Considering first the portion of C,’ consisting of one of the lines parallel to
the z axis, we readily obtain as in § 64 the fact that for all values of a, B and ¢
in (126) each of the integrals in (128) when extended over the line in question
approaches uniformly the limit zero as j = . Thus we have merely to con-
sider (128) in which z = k 4 7y and C,’ is understood to extend from y = — o
to y = + o along the line z = k 4 3.

Now, from the manner in which % is to be chosen, we see from (129) that we
may take k = nwr 4+ a or k = nw/2 4 a; (n = positive integer) according as we
are dealing with (114) or (115). In either case, equations (129) are such that

1 47 8

where v is independent of z while 8 depends upon z but has a modulus which for
all values of z under consideration is less than a certain quantity M.
Thus, (128) may be written in the form

1 B\ o ¥ b\ sintz
2r Jo (&) dtj_“,.,(l-l_;tanhy-'_?)tcosh2 dy
p\rtam b.\ sin [(a + B)z — 2a]
+§1; (;) a+ﬂf (1+ tanh +z2) cosh? y dy
1 é +1/2)  d¢ (_1 e_;)
+2r (a) a¥8) { z+z’ cos iz

-{-(‘fl )cos[(a-l-ﬁ)z 20]}_@_?/’

cosh?

(130)

where b; has the properties mentioned above of b;.
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Considering first the terms of (130) which have 2? in their denominator, we
have but to refer to the discussion of similar terms in (89) in order to see that
for all values of a, 8 and ¢ in (126) these terms have uniformly the limit zero when
k = . The same is true also of the term

f (é)vﬂl/’) adt costs .
b \a a+ BJ_, zcosh?y Y

since we have cos &z = cos tk cosh ty — ¢ sin tk sinh fy and we know that when
|t| < 1 (as is the case in (126)) the integrals

cosh ty ® |sinh ty|
f cosh? y dy, j:,, cosh? y 4y
have a meaning.
Thus, (130) reduces to

1 AN sin 3
2r ( ) dtf (1+ ta'uhy)tcosh’——dy

1 v+O18) sin [(a + B)z — 2a]
(131) f( ) a+Bf (1.|. Y tanh ) iy
1 B\ ™ e cos [(a + B)z — 2a]
ta 0 (&) &+B£.. z cosh? y dy + Ale, 8, B),

where ¢,’ depends only upon «, 8 and ¢ and is finite for all values of these quan-
tities in (126) and where A(q, ¢, k) and also dA(w, ¢, k)/dt depends upon «, B,
t and z but when considered for all values of &, 8 and ¢ in (126) may be made
(uniformly) as small as we please in absolute value by taking k sufficiently large.

Upon placing s = k + ty and recalling the values which k¥ may assume;
also placing for convenience a 4+ 8 = 2 — 7 and dropping those integrals which
vanish identically since they are relative to odd functions of y, we thus obtain
(131) in the form

1 ( )"‘“‘am Ltd J“’ cosh t.'l
2r «@ cosh! y

) (d)'“""\m kt (**y tanh y cosh ty
or .',, a t J_o (4 coshty

N AN “k tanh y sinh ty
+-rj ( ) cos ktdt f.(k’-}-y‘)t hty dy
(.3)"“‘ sin k-r ** cosh (a + B)y dy

2

ﬂl—‘ Eh

(13D

L v'\\l‘s' h h
:F)s (8) mkrdr' Fy tanh y cos (a+ﬂ)yd

« a+3 + cosh'y

-l' (S R )
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7 B\ " cos kr ® k tanh y sinh (a« 4 B)y
q:%j;_.)(a) et BT ) B+ P cosh? y dy
1 [ (BY*™ coskr ® k cosh (a + B)y
o m—-)(;) a a+ﬁdrf_., B+ cosh’ydy
1 B\ ™, sin kr ®y sinh (@ + B)y
Tor oo (a) “arp? f_., (2 37 coshty W T Ale 8, K),

the upper or lower sign being taken according as we are dealing with (114) or (115).

The expression (132) may, moreover, be used to determine the value of the
integrals (114) and (115) corresponding to the case « = 1. In fact, whena =1
and B and ¢ are confined by (127) we readily see that each term of (132) con-
tinues to have a meaning.

From the properties already found of the integrals in (93) it now appears that
the second, third, fifth, sixth, seventh and eighth integrals of (132) when con-
sidered for all values of o, 8 and ¢ in (126) or (127) have uniformly the limit
zero as k = oo, while if we treat the first integral as we treated the first integral
of (93), remembering here that l‘ixil (B/a)"+ WD = 1, we find that when k = o this

integral behaves precisely as the indicated integral of (93)—i. e., approaches the
limit } or — 4 according ast > 0ort < — 0.

Similarly, the integral
1 (Q /D) sin kr i ® cosh (a + B)y
21 Jog—ay \ @ a+f T, _o»  cosh?y Y

like the fourth integral of (93), has uniformly the limit zero if a’ < a < b’ while
if @ = 1 it has the limit 3.

Whence, if we are dealing with values of «, 8 and ¢ satisfying (126), the ex-
pression (132) converges uniformly to the limit 4 or — 3 when k = <« according
ast>0o0r t< — 0, while if =1 and 8 and ¢ have values consistent with
(127) the same expression has the limit 0 or 1 according as we are dealing with
(114) or (115).

Thus, exception being made of the case & = 0 in the integral (115), the inte-
grals (114) and (115) satisfy relation (I) of Theorem I, § 51 provided, however,
that ¢ has only those values for which —a+ ¢ =t=1-—a; £ > 0. More-
over, when a = 1, relation (I); of Theorem VI, § 55 is satisfied for the same
values of ¢ and in this relation we have in the present instance G: = O or Gy = 1
according as we are dealing with (114) or (115).

Again, if & = 0 in (115) the limit approached by this expression as k = «
(¢ < a<b) will be  + (2 — 2% or — } + (a2 — %) according as
t > 0ort <0, it being understood as before that —a+ ¢ =t=1— a.

Likewise, if @ = 1, other conditions remaining the same, the limit approached
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by (115) as k = o will be — 1 4 (o2"*2 — §212), In both the cases which thus
arise when & = 0 we evidently meet with an application of the third general
remark of § 56 and we shall make this application presently.

Turning to the other relations of Theorems I and VI of §§ 51 and 55, we see
that in the present developments the function ¢(n, a, t) is equal to

1 g+ f P'(az)P(Bz) — P’'(Bz)P(az)
o

(133) P — o 7G)

dz

in the case of (114) while for (115) the same function reduces to

1 g1 [ k@ R+ ,
a3y - B =a)., @PG) —hPRF [P'(az) P(82) — P'(82)P(cz)]dz
or
1 g P'(az)P(Bz) — P(Bz)P'(az)
135 - @+aptg g [ e ds,

according as k + O or b = 0.

Now, for values of a, 8 and ¢ in (126) we may transform (133), (134) and
(135) by use of expressions (122), (123), (124) and (125) and thus we find that,
exception being made of the term — (2» 4 2)**! in (135), these expressions
all reduce to the sum of the derivatives with respect to ¢ of the expression (132).
From this it follows directly upon using the lemmas of the Appendix that the
above expressions satisfy relations II and IIT of Theorem I, § 51; also that
when « = 1 conditions (II), and (III), of Theorem VI of § 55 are satisfied,
it being understood throughout as before that we are dealing only with values
of tsuchthat —a+ ¢t =t=1—a; £ >0.

Moreover, if we affect each of the terms of (132) by the operation

1 n

s
understanding that absolute values are taken under the various integral signs,
it appears as in the study of (93) that when —a+ (=t=1—a (£>0)
relation (II)’ of § 52 is satisfied, as also (II)y’ (b = 1) of § 55.

It remains, then, merely to consider the integrals (114) and (115) when ¢
takes values such that —a=t= —a+ ¢ (¢ > 0) and for this it becomes
necessary, as already noted, to use some other expressions for P(8z) and P’(Sz)
than (124) and (125), since 8 now takes values indefinitely near to zero.

Considering, then, that ¢ = — « is one of the exceptional points of the type
mentioned in remark (1) of § 56 it will now suffice for the application of Theorems
I, II, VI and VIII of §§ 51-55 that such additional conditions be placed upon f(x)
that when either of the expressions (133), (134) or (135) is multiplied by f(a 4 ¢)
the absolute value of the product, when considered for values of ¢ such that
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— a =t = — a- ¢ and for all values of n, may be made uniformly small with &,
this being true when ¢’ < a < %’ and when a = 1.

Let us now divide C,’ into two portions C,” and C,'”’ the first of these com-
prising that portion of the line z = k + 7y for which |y|< », where 5 is an
arbitrarily small positive quantity and the second comprising all other portions
of Cp'.

As regards the expressions (133), (134) and (135) when the integration is
performed over C,”’, we have but to make use of the well known formula

1

P& = o+

f sin® ¢ cos (2 cos ¢)dp; y>—-1
0
to see that when |8|< # the same expressions (C,’ now replaced by C,”) are
each of the form *+'G(a, B, n, &, 1) where G(a, 8, n, £, 7) is less in absolute
value than a constant independent of a, 8 and n.

In order to study the same expressions when the integration is performed over
C,'"" we first make the following observations:

Let us write (120) in the form

2v41 )

o cos (z - 4 ™
(136) P,(2) = 'J,’:r 2 H U2 A(z, v),
so that

A@v) = {1+ €@ 9} + ) tan(z—zvi— lvr).

For all values of z (real part > 0) lying upon C,’” and of modulus greater
than some fixed value 2o > 0 we see that A(z, ») remains less in absolute value
than a constant M,. Moreover, if » (v + neg. integer) has any value except
one of the form 3(1+4n); n =0, 1, 2, 3, ---, the same expression when con-
sidered for values of z (real or complex) as near to zero as we please remains
less in absolute value than a constant M, provided » = . In fact, it appears
from (136) that as z = 0, A(z, ») will tend to zero like 2"+1/?, since from (104) we
have

lim P,(z) = v>—1.
=0

1
2T+ 1)’
Whence, if » has any value = — } except one of the form 3(4n 4+ 1); n = 0,
1,2, ---, we may write for all values of z upon C,"”’
( 2v+1 )
cos| z — T

4
P,(2) = 2 Han) B(z, v),

where B(z, v) remains less in absolute value than a constant (independent of z).
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Similarly, if » has any value > — } except one of the form 4(4n — 1);n = 0,
1, 2, ---, we may write for all values of z upon C,"”’
) ( 2v+1 )
sin\ z——5—
P.(2) = ) B(z, v)

where B(z, v) has the properties just mentioned.
It follows that for all values of z (real part > 0) upon C,’”” and for all values
however small of the positive quantity 8 we may write, provided v = — }

cos(ﬁz - 2”:_ lr)
(137) P,(8z) = By BBz, v)
or .

sin(ﬁz - 2”: lr)
(138) P,(z) = (Bz)"Ham BBz, v),

where for the indicated values of z and 8 the expression B(8z, v) remains less
in absolute value than a constant independent of both 8 and 2z and where the
first form can be used in all cases except when v = 4(4n+1);n=10,1,2, ---,
while the second form can be used in all cases except when » = }(4n — 1);
n=2012 ---.

By means of the relation

P, (Bz) = — (%P,11(Bz)

we now obtain, as formule corresponding to (137) and (138),

. ( 2v+1 )
sin{ Bz — r
P, (Bz) = B+ BBz, »),
(139)
( v+1 )
cos| Bz — 2 T
P, (Bz) = Tpamgam B(Bz, v),

where B(Sz, v) has the properties given in connection with (137) and (138) and
where the first or else the second formula (and in general both) can be used for
any given value of v = — 3.

Now, if we use in (133), (134) and (135) the forms (137), (138) and (139)
(thus confining ourselves to an integration over C,’’) we find as before that
by taking j = « the complex integrals become simply those arising when, in-
stead of C,'”’, we take as path of integration the line 2 = k 4 1y, it being under-
stood that the integration now consists of that from y = — «© to y = — g
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together with that from y = ntoy = . This statement, as in the former case,
is seen to be true either when @’ < @ < b’ or @ = 1. The resulting complex
integrals thus take a form analogous to (132) involving real integrals of the form

g [+ )ewtn  grm( [+ [ ) e
ﬁ_v}ﬁ/‘z)( _[ : + j;m ) e3(y)dy,

where the expressions ¢1(y), ¢2(y) and ¢3(y) are functions of k, o, 8 and ¥ in
each of which the numerator contains, besides factors whose modulus is always
less than a constant, terms in each of which appears one of the factors sinh ay,
cosh ay while the denominator contains cosh? y. Thus the integrals in question
(aside from the factor 8"~ appearing on the outside) are always less in absolute
value than a constant independent of a, 8 and £, it being understood throughout
thata’ < a < b ora=1and |B|< &

Thus the expressions (104), (105) and (106) when considered for values of 8
such that |8|< ¢ are of the form §"*"® H(a, 8, n) where H(a, 8, n) is less in
absolute value than a constant independent of a, 8 and n.

It follows therefore (considering the forms which we have now obtained for
the expressions (133), (134) and (135) when the indicated integration is performed
either over C," or C,’”") that we shall be able to apply Theorems I, II, VI and
VIII of §§ 51-55 to the present developments if we demand (in addition to
the conditions placed upon f(z) in the same theorems) that the function f(8)g"+®™
be integrable in the neighborhood at the right of the point 8 = 0, it being under-
stood also that » > — 4. In other words, we need merely make the additional
demand that z"**™f(z) be integrable in the neighborhood at the right of the
point z = 0.

Upon applying Theorems I, II, VI and VII of §§ 51-55 and remarks (1)
and (3) of § 56 we thus arrive in summary at the following result:

“If f(z) remains finite throughout the interval (0, 1) with the possible ex-
ception of a finite number of points and is such that the integrals

] 1
(140) f 2P| f(z) |de, f |f(z) | d=, ¢ arbitrarily small and positive,
0 «

exist and if P,(z) be the function defined for all values of z and for v > — 1 by
the equation (104), then each of the three series:

3 0P, 0w,

v+ [ @@z + 3 0P,
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"Z__:l qﬂ"Pin"x)’

in which \,, N\, and \,” represent respectively the nth positive roots of the
equations

P,(z) =0, P/(z) =0, 2P,’(z) — hP,(2) = 0; h = constant £ 0

and in which

o= g ), ZH@PME,

2 1
g’ = PO j; zHif(2) P,(\a'z)dx,

" 2&-"2 '
{h2v + B) + M} P, (0"
will converge provided v = — } at any point z (0 < z < 1) in the arbitrarily

small neighborhood of which f(x) has limited total fluctuation, and the sum
will be

n [ =p@Pp.ow iz

3 [f(z — 0) + f(= + 0)].

Moreover, the convergence will be uniform to the limit f(x) throughout any
interval (a’, b’) enclosed within a second interval (a;, b;) such that 0 < a; < a’
< b’ < b < 1 provided f(x) is continuous throughout (a’, b') inclusive of the
end points ¢ = a’, z = b’ and has limited total fluctuation throughout (a,, by).

Also, if f(z) remains finite throughout the interval (0, 1) with the possible
exception of a finite number of points and is such that the integrals (140) exist,
then each of the three series above (v = — 3 )will be summable (r = 1) at any
point (0 < z < 1) at which the limits f(x — 0), f(z 4+ 0) exist and the sum
will be

3 [f(z — 0) + f(z + 0)].

Moreover, the summability will be uniform to the limit f(z) throughout any
interval (a’, b’) such that 0 < @’ < b’ < 1 provided that at all points within
(a’, b’) inclusive of the end points z = a’, z = b’ the function f(z) is continuous.

Under the same conditions for f(z) when considered throughout the whole
interval (0, 1) the three series (» = — 1), when considered for the value 2z = 1,
will converge to the respective limits 0, f(1 — 0) and f(1 — 0) provided that
f(z) is of limited total fluctuation in the neighborhood at the left of the point
z =1

The same series when considered for the value # = 1 will be summable to the
respective limits 0, f(1 — 0) and f(1 — 0) whenever f(1 — 0) exists.”

67. If we now introduce Bessel functions into this result through the relation
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P,(z) = z7*J,(3) and then apply the theorem to the function 2~’f(z) instead of
f(x) we obtain the following:
TeEOREM. If f(x) remains finite throughout the interval (0, 1) with the possible
exception of a finite number of points and 13 such that the integrals
¢ 1
(141) f z}|f(z) | dz, f |f(x)|dz; € = arbitrarily small positive constant
0 e
exist and if J,(3) be Bessel’s function of the first kind of order v then each of the
three series

gq,.J,o..x),
1 )
@+ 2) f @)z + 20,7, 04'9),

i q”IIJ'O"IIz)’

n=1
in which Na, Ns' and N, represent respectively the nth positive roots of the equations
Jv(z) =0,
diz(f "J,(2) =2J,/(2) — vJ,(2) = 0,

2J, (z) — (h+ »)J,(z) =0, h = constant + 0,
and in which

2 1
&= Tro ), F@. 0z,

1
W = T ), T,

" 2Mn’
{h2v + ) + M}, N)2

will converge provided v > — % at any point x (0 < z < 1) in the arbitrarily small
neighborkood of which f(x) has limited total fluctuation, and the sum will be

3 [fz — 0) + f(z + 0)].

Moreover, the convergence will be uniform to the limit f(x) throughout any interval
(a’, b") enclosed within a second interval (a1, by) suchthat0 < a; < a’' < V' <5< 1
provided f(x) ts continuous throughout (a’, b’) inclusive of the end points z = a/,

= bV’ and has limited total fluctuation throughout (ay, by).

Also, +f f(x) remains finite throughout the interval (0, 1) with the possible ex-

ception of a finite number of points and ts such that the integrals (141) extst, then
12

o [ #@a.0nz)iz
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each of the three series above (v > — %) will be summable (r = 1) at any point z
(0 < z < 1) at which the limits f(z — 0), f(x + 0) exist and the sum will be

3 [fx — 0) + f(= + 0)].

Moreover, the summability will be uniform (§ 45) to the limit f(x) throughout
any nterval (o', b') such that 0 < a’ < b’ < 1 provided that at all points within
(@', b') inclusive of the end points z = o', x = b’ the function f(z) i3 continuous.

Under the same conditions for f(x) when considered throughout the whole interval
(0, 1), the three series, when considered for the value x = 1 will converge to the
respective limits 0, f(1 — 0) and f(1 — 0) provided that f(x) s of limited total
SAluctuation in the neighborhood at the left of the point x = 1.

The same series when considered for the value z = 1 will be summable (r = 1)
to the respective limits 0, f(1 — 0) and f(1 — 0) whenever f(1 — 0) exists, it being
always assumed that the integrals (141) exist.2

3. The Developments in Terms of Legendre Functions.
68. We proceed to consider the well known development

12) @ =Eak@;  w=25 [ (@Xed,

in which X, (z) represents the polynomial of Legendre (Zonal Harmonic) of order
n. In the notation of § 60 we here have a development of the form (54) in which
H(z, z) = X,(z),a = — 1, b = 1 and in which equation (53) becomes

(%{(1—&)%}+z(z+ )X = 0.

Moreover, since z is to take only integral values, the equation u(z) = 0 must

2 It may be noted that our results, in so far as they concern convergence at a special point
z (0 < z < 1), are not in entire accord with those of DiN1 (“Serie di Fourier,” pp. 266-269).
In fact, instead of the existence of the first of the integrals (141) DIN1 requires that |f(z)|zv+i—»,
where p is the greater of the two numbers », 4, shall be integrable in the neighborhood at the right
of the point z = 0. This discrepancy is due chiefly to a slight error occurring in formula (95),
P. 237 of Dinr’s work, the last term of which should contain under the integral sign e—rs3v—1-n
instead of e~7r*~3", as appears from the analysis on p. 237. If this formula (95) be altered
a8 just indicated and resulting changes be made on pp. 242, 243, 265-269, we are led to the above
theorem. This same theorem, so far as it concerns convergence, is in accord with the results
published in recent years by HoBsoN (Proc. London Math. Soc., Vol. 7 (1908), pp. 359-388),
while, as regards summability, the theorem is in accord with the results of C. N. Moore (T'rans.
Am. Math. Soc., Vol. 10 (1909), p. 428).

It may also be remarked at this point that, except in the study of uniform convergence,
the results published of late years by HoBson and others respecting the convergence of Fourier
series and other developments in terms of special normal functions were originally obtained
rigorously for the first time by DiNi—a fact apparently not well understood. See, however’
NieLson, “Handbuch der Theorie der Cylinderfunktionen,” p. 353.
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here be regarded as given in advance and may be taken for example as
u(z) = sin 7z = 0.

Furthermore, we have in the present instance K(z) = 1 — 2? so that equations
(60) become satisfied identically by taking k' = 0, k= 0. However, since
K(+ 1) = 0 it follows that the general formule of § 61 for the determination
of the integral (36) corresponding to the present development cannot be used.
It becomes necessary, therefore, in order to ascertain whether this integral satis-
fies the conditions of the fundamental Theorem I, § 51, to proceed independently
of such formulee.

Now, the integral (36) here becomes

1) [ ot ait=35 @+ DX [ Kalat

and hence also

(144) oln, @ 0 = } 3 @0 + DEne@) Xalar+ 0.

We proceed to show that the three relations of the general Theorem I of § 51
are satisfied in the present instance, it being understood that we here have
a=—1,b=1.

The values of a and ¢ with which we are concerned are such that

—1<d=a=0b <1,
—1=Za+t=1.

We may therefore place a = cos ¢, & 4 t = cos 0 in which case we have, as is
well known,?? ,

(145) Xn(cos 0)Xn(cos 0') = %’ A Xa(cos v)de,
where cos ¥ = cos 0 cos 8’ + sin 8 sin 6’ cos (¢ — ¢’), it being understood that
(0, ¢) and (¢, ¢') thus represent the polar spherical coérdinates of two points
M, M’ on the unit sphere, while v represents the spherical distance between the
same points.

Thus we may write

] n ] 2%
f o(n, a, H)dt = — 4/-1—” > @n+1) f sin 0d6 X, (cos y)de
0 n=0 [ 4 0

or, since d d
n _ _1- X,‘ Xn+l
(146) 2. @n+ DXa(cosy) = — 2o 7{ dy T dy } ’

1 Cf. for example, TopHUNTER'S ‘‘Treatise on Laplace’s Functions, Lamé’s Functions, etc.”
(London, 1875), § 170.
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we have

(147) f o(n, a, t)dt = fsm 0d6 f tr { d‘y an+1 } s:f:o’y

Whence, if we denote by do the element of spherical surface and observe that
df is negative when ¢ is positive (3. e., when 6 < 6’), while d is positive when ¢ is
negative, we may write

149 [ omana==g [ [{ G+ a5

in which the upper or lower sign is to be taken according as ¢ is positive or nega-
tive and where it is understood that the integration is extended over the zone
lying between the parallels § = 6’ and 6 = 6.

Let us now choose a new coérdinate system (v, ) such that the fixed point
M’ = (¢, ¢') becomes the point v = 0, while the great circle through M’ tangent
to the circle 6 = 6’ determines the points for whichy = 0. Then do = sin ydydy
so that if we represent by v:(6’) the value of v pertaining to the point upon
the circle 6 = 6’ having the (variable) coordinate ¥ and agree to place for con-
venience Y,(cos v) = Xn(cos ¥) + Xnpt1(cos v), we may put the equation (148)
into the form

S ot 0t = - [ ateos I = L0,

in which g =0, =7 or g = 7, h = 27 according asa Z O0ora < 0 (¢’ = /2
or 0’ > 7/2) and in which I,(t) is defined in one of two ways as follows:
(@) f0<@or=x—29,

(149) L) = 4 [ (Yalcos ot

in which ¢ and = — ¢ represent the two values of y determined by the planes of
the two great circles through the point ¥ = 0 tangent to the circle 6 = 6 and in
which v,(0) and v3(0) represent the two values of v pertaining to the points upon
the circle 6 = 0 having the common coérdinate .
G << m-—0,
3w

(150) L =g [ Yalcos m@dv,
0
in which v;(f) represents the value of v pertaining to the point upon the circle

0 = 6 having the coérdinate .
Upon writing

[Ya(cos Y)Y + [Ya(cos ¥)1j=0 — [Ya(cos ¥)]j=yyen
# We here employ the common notation [f(z)]t-a = f(b) — f(a).
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and observing that Y,(cos 0) = 2, Y,(cos ) = 0, we thus obtain

(151) f o(n,a,t)dt = = 3% =F4l1r f Ya(cos v1(0"))dy £ 1.(t).

In order to show that relation (I) of § 51 is satisfied it therefore suffices to
show that for all values of @ and ¢ such that

{—1<a’§a§b'<1

(152)
—l—a=t=—¢ or e=St=1—a (e>0)

the last two terms of (151) converge (n = o) uniformly to zero. In doing this
we shall make use of the following two fundamental results respecting Y.(cos v):
(4) For values of v in any interval such that 0 < { =y =7 — £ < 7 the
expression Y,(cos v) converges (n = o) uniformly to zero.
(B) For all values of n we have uniformly lim ¥Y,(cos ¥) = 0—=. e., corre-

y=%—0

sponding to an arbitrarily small positive quantity ¢, one may determine a second
positive quantity { independent of n and such that | ¥.(cos v)| < o when

rT—{=y=m.
The proof of (4) follows directly from the well-known fact® that X,(cos v)

satisfies the indicated relation, while the proof of (B) may be supplied as follows:
From the formula®

X,(x)=%_£'[z+4xflcos¢]»d¢; —1=z=1
we have
Ya(z) = :jj;' 14 24 V22 — 1 cos ¢llz + V2% — 1 cos ¢]"de.
Whence,
|Y,(x)l§%£' |14 242> — 1cos plde = |1+ z|+ 1 — 22,

so that for all values of n we have uniformly

lim Y,(x) =0 or lim Y,(cosy) = 0.
z=—140 y=x—0
Results (4) and (B) being premised, we now turn to the second term appearing
on the right in (151) (which term, except for the sign =, is independent of ¢,
but depends upon a). Let us first confine ourselves to values of a which are
positive (0 < a < b’). For such a value of a the term in question has the form

1 4
:F4T1rj; Ya(cos v1)dy; 71 = 71(6).

% Cf. for example, FEJER, Math. Annalen, Vol. 67 (1909), p. 103.
 Cf. for example, BYERLY’S “Fourier Series, etc.,” p. 166.
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Omitting the factor & 1/4m, let us write this in the form

* [2—n w2+
[ ¥uteos vy + [ Yateos v + L7 Facos viay
as3) " A

w

+ - Y.(cos v1)dy + f i Ya(cos y1)dy,

w240
where 7 is an arbitrarily chosen, small, positive quantity.

Since | Ya(cos v1) | = 2 whatever the values of n and v, the first, third and
last terms here appearing may be made arbitrarily small in absolute value with a
proper choice of 7, this being true not only for special values of n and «, but uni-
formly for all values of a such as we are considering and for all values of n. After
n has once been chosen, the values of v; which enter into the second and fourth
terms under the sign of integration are seen (upon reference to the unit sphere)
to always be such that 0 < 7y =1 =7 — n1 < 7 where 7 depends only
upon 7. From result (4) it follows that the same terms approach uniformly
(0 < a < b’) the limit zero as n = .

Thus the second term of (151) comes to have the properties desired.

We proceed to examine the properties of the last term in (151) —4. e., of the
expression I,(¢). Sincetis confined by relations (152), the angle @ never approaches
(as ¢ varies) nearer to 0’ (regarded as fixed with ) than some positive quantity x
which, if taken small enough, will be independent of both a and ¢. With « thus
chosen, it now suffices to show that for all circles 6 such that either0 < 6§ < ¢’ — «
or & 4+ x < 0 < 7 the expression I,(f) converges (n = ) uniformly to zero.
In showing this we shall find it convenient to divide these circles into three

classes as follows:
@) 0<O6<0 —x,

) 4+c<<b0<7T-—0,
¢ 7m—0 <0<

Also, we shall assume for the present (as above) that 6’ < 7/2 (@ > 0).

First, for the circles (a) we have I,(f) defined by (149) in which 42(6) and
v3(0) are such that x = vy, = 7/2, k = v;3 = 26’ — x < =, while ¢ lies between
fixed limits dependent only upon e (as again appears after noting the significance
of the various letters upon the unit sphere). Whence, by result (4) we reach the
desired result for the circles (a).

As regards the circles (b), let us divide these into two sub-classes as follows:

B -0 —91<0<7—-60,
B +k<0<mT—06—19,

where 7 represents an arbitrarily small positive quantity.
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For the circles (b)’ we have I, () defined by (150), which may be written in
the form

"+ *—
(154) w) s mady+g [ Yuieos v,

where w represents an arbitrarily small positive quantity. Now, by choosing 7
and w each sufficiently small, all the values of v; entering into the first term of
(154) may be brought as near as we please to m, so that in view of result (B),
we conclude that the first term of (154) may be made arbitrarily small in absolute
value by taking 7 and w sufficiently small and that this is true uniformly for all
values of n. With 5 and w once fixed, we now observe that the values of 73
entering into the second term of (154), when considered for the circles (b)’, never
approach nearer to = than a fixed value independent of 6, while the same values
of v; remain different by as much as x from 0. Hence, for reasons already stated
in connection with the circles (a), the second term of (154), when considered for
the circles (b)’ approaches uniformly the limit 0.

With 5 fixed as above, let us now consider the circles (b)"”. Here again we
have the form (150) for I,(¢), but the values of v; never approach nearer to =
than a certain positive value independent of 6, nor nearer to zero than «, so
that as before we see that uniform convergence is present. In summary, the
expression I,(f) has the desired properties for all the circles ().

We turn lastly to the circles (¢). Let us divide these into two sub-classes as

follows:
) 7—0<<0=r—0+4,

@ 7—0+4+u=0<m,

where u represents an arbitrarily small positive constant. For the circles (c)’
we have I,,(f) defined by (149) and by taking u sufficiently small the values of v3
pertaining to these circles (¢)’ may be made to differ by as little as we please
from w. At the same time, however small 4 be taken, we have vy2 = « > 0.
Whence, using result (B), we see as before that if » be any preassigned arbi-
trarily small positive quantity, we may take u so small that for all the circles
(c)’ we shall have uniformly |I.(f)| < ». With u thus chosen, let us consider the
resulting circles (c)””. Here again we are to use the form (149), but the values
of v2 and v; which enter lie between assignable limits m, n such that m > 0,
n<w (m=«, n=am— u). Hence, for the circles (c)”’ the expression I,(f)
has the desired properties, and in summary we may say that the same is true for
all the circles (c).

Thus, relation (I) of § 51 becomes satisfied for all values of o within the
interval 0 =a =% < 1. That it is satisfied also when — 1< a' =a=0
may now be inferred as follows:
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In the present development we have ¢(n, a, t) = ¢(n, — o, — t) and hence

(155) j:cp(n, a, H)dt = £‘¢(n, —a,—dt= — f‘ o(n, — a, t)dt.

If & be such that a’ = o = 0 it follows from what we have already shown that
the last member of (155) will converge to the limit 4 or — 4 accordingas — 1 4 «
=E—t=—¢ore=—1=1+ o, and that for all such values of a and ¢ the
convergence will be uniform. This is, however, the same as saying that for
d=a=0and—1—a=t=—eore=1t=1— athe first member of (155)
shall have the properties desired.

That relation (II) of § 51 is also satisfied in the present developments follows
from (151) together with (150). Thus, for all values of « in (152) and for all
values of ¢ such that — ¢ = ¢ = ¢ we have

_£'¢(n,a, t)&l§§+4%r£'2d¢+£-r o"2d¢= 2.

With regard to relation (III) of § 51, we note that the function ¢(n, a, t)
of the present development is given by (144). Now, availing ourselves of the
formula

33 e+ DX K@) = L L@ = X))

and of the fact that for large values of n the function X,(cos 6) is of the form?’

nr sin 0

( ; )‘A(""’% |A(n, 6)| < 1

provided 6 lies in any interval of the form 0 < ¢ = 0 =7 — &; £ > 0, it appears
that (III) is here satisfied for all values of « and ¢ such that — 1 < a' =a =¥’
<land —l1—a+¢t=t=—¢ e=t=1—a—¢ (£ >0). Whether the
same is also true (as desired by (III)) when ¢ lies in the intervals — 1 —a =t
=—1l—a+t+torl—a—¢t=t=1-— a remains in doubt, thus leading
eventually to an application of remark (1) of § 56. Due account of this ex-
ceptional character will be taken before the final summary of our results into a
theorem.

We turn to the consideration of (143) when ¢ = = 1. First, if a = 1 we
have

[ o(n, 1, O)dt = ;g @n+ 1) O‘X,.(l + 9dt
=— ii X.(cos 6) sin 6d6

n=0 Jo

(156)

17 Cf. Fey£R, L c., p. 103.
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and we shall now show that for values of £such that — 2+ e =t = — ¢; 1. ¢,,
of 6 such that 0 < 7 = 0 = = — 75 (¢ arbitrarily small but > 0) the last member
of (156) converges (uniformly) to the value — 1 when n = «, thus satisfying
relation (I)» of § 55 (G: = 1) when exception is there made of the value t = — 2
6 = ).

In fact, when @ = 1 we have 6’ = 0, so that in using (147) we have y = 0
while ¢ becomes independent of §. Thus we may write

° d
[ o1, 00t =4 [ 5 (Xateos & + Xura(eos 01d8

= 4[Xa(cos ) + Xnt1(cos 0)] = — 1+ 4 Y,(cos 6).

(157)

The indicated statement thus follows upon noting the properties already men-
tioned of Y,(cos ) when 0 < n=0=7— 19 ( > 0).
Again, if « = — 1 we may write

j: o(n, — 1, 0)dt = — %g(Zn + 1)(— 1)"fX,.(cos 6) sin 6d9

=—32X@n+1) [ Xufcos (r — 6)} sin 640
(158) n=0 L g

— %fl Y, {cos (x — 6)}d0

= — §[Yafcos (r — 0)})o-s = 1 — § Y, {cos (v — 0)},

from which it appears that for values of 6 such that n =0 =7 — 7 ( > 0)
1. e., of t such that ¢ = ¢t = 2 — ¢, the first member of (158) converges uniformly
(n = ) to the limit + 1, thus satisfying relation (I), of § 55 (G1 = 1) when
exception is there made of the value t = 2 (§ = 0).

Relations (II); and (II), of § 55 are evidently satisfied as a result of (157)
and (158), but relations (III), and (III), are not satisfied. For example, we
have

o 1,0 = 4 3 Gnt DXL+ = § 35 @0 + DXaleos 0

and as n increases indefinitely the right member here appearing becomes an
oscillatory divergent series whatever the value of 6.2 We are here led, there-
fore, not to an application of remark (1) of § 56, but rather to an entire recon-
sideration of the reasoning by which Theorems (V) and (VI) of § 55 were estab-
lished. In this way we may supply conditions for f(z) which, notwithstanding
the present exceptional character of ¢(n, 1, ¢), will insure the convergence of the
series (142) when z is equal to either 1 or — 1.

18 Cf. Fy£Rr, L. c., p. 106.
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Thus, if 3,(1) represents the sum of the first (n + 1) terms of the series (142)
when z = 1, we may write

159) 8 = [ F0+ 1 oln, 1, Dt + [sa+0em 1 0d  e>0.

Since, as already shown, relations (I), and (II), are satisfied, it follows (cf.
(25)) that the first term here appearing on the right approaches the limit f(1 + 0)
provided only that the integral

[ @

exists and that f(z) has limited total fluctuation in the neighborhood at the left
of the point z = 1. It remains, therefore, but to impose such further conditions
upon f(z) that the last term of (159) shall approach the limit zero as n = o,
and we shall now show that this will be the case whenever f(z) is of limited total
fluctuation throughout the whole interval (— 1, 1).

First, let us consider the integral

(160) IR ©J e, 1, 0

Considering that n has any fixed value (positive integral), let us divide the
interval (— 2 4+ ¢, — €) into a certain number m of parts such that in each the
function ¢(n, 1, t) does not change sign. Let pi, ps, -+, Pm—1 be the corre-
sponding points of division. We may then write

_’;f(l+t)¢(n, 1, t)dt=( j_: '+.+ j:' 4o M‘) 0+ Dolm, 1, dt

=f1£+'¢dt+fzj:¢dt+ ---+fm.1‘£:‘¢dt+fm£:¢dt,

where ¢ = ¢(n, 1, t) and fi, fa, f5, - -+, fm are certain values lying between the
upper and lower limits of f(1 4 ¢) when considered within the intervals

(_ 2+ €, pl)’ (pl, p2)’ Tty (pm—2: pm-—l): (pm—l: - é)

respectively. Whence, if we let 0y, 02, - - -, Om—1, Om be the values of
(161) [ o1, na

-2+
at the points t = p;, t = p, - -+, t = p, respectively, we may write

_’: f + e(n, 1, )dt = 6:(f — f2) + 6:2(fo — f3) + - -
+ om—l(fm—l —fn) + on\fm-
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Since, as already shown, the integral (157) when considered for values of ¢
in the interval — 2 4+ ¢ =t = — ¢ converges uniformly (n = ©) to the hmit
— 1, it follows that the integral (160), when considered for the same values of ¢,
converges uniformly to the limit zero. Whence, if ¢ be a preassigned arbitrarily
small positive quantity we shall have, at least if n be chosen sufficiently large,
|6:1]< @, 62| < g, -+, |0m| < 0. Whence, also, if N represents the upper limit
of f(1 4 t) between t = — 2+ ¢ and ¢t = — ¢, and if D, represents the fluctu-
ation of f(1 4 ¢) in the interval p, < ¢t < p.41, the last equation enables us to

write

1+ eln, 1, t)dt( <(x+E ),

L.

from which the indicated result concerning the last term of (159) becomes evident.

Similarly, when £ = — 1 we may obtain the corresponding result so that the
discussion of the convergence of the series (142) may now be readily completed,
both for the case of a point z such that — 1 < z < 1 and for the end points
z = =+ 1, except that, following remark (1) of § 56, it remains to consider the

integrals
—1—a+§

—1—a
—24 e

S0+ 0ot 1,00, [ = 1+ otn, — 1, et

St Dotm a0, [ flat oln, @ 0
(162) ~

In order to complete the discussion it thus suffices to show that, at least if ¢ be
taken sufficiently small, each of these integrals remains less in absolute value than
any preassigned positive quantity w provided n be greater than some fixed
quantity N. Moreover, in the case of the first two integrals, this property should
be true uniformly for all values of a such that — 1 <ad’' =a=0<1—zt. ¢,
the determination of N should not depend upon a.

Taking the first of the integrals (162), let us now suppose that f(z) is of
limited total fluctuation in the neighborhood at the right of the point z = — 1
and hence that f(a-}¢) has the same property at the right of the point t=—1—a.
Then, since we have already shown that the integral (143) converges (n = «)
to the limit — 4 and that the convergence is uniform for all values of a and ¢
suichthat — 1 <ad' =a=b<1; —1—a=t= — ¢ it follows that we may
treat the first of the integrals (162) in the same manner as we treated the
integral (160), thus showing that however small the choice of the positive
quantity ¢, we may determine a value N (dependent only on ¢) such that

n T e Do <, sat| <o (¥ +Er),

1—a =1
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where \’ is the upper limit of f(@ + ¢) in theinterval - 1 —a<t< — 1 —a+ ¢
and where

m—1

2 D/
=1

represents the sum of the oscillations of f(a + f) corresponding to a certain
division of the same interval — a sum which by hypothesis is less than a constant.

Similarly, the second of the integrals (162) is found to have the properties
desired.

As regards the third integral, the method just employed cannot here be used
because we have not investigated the convergence of the integral (157) when
—2=t=-—2+4¢ We may, however, show as follows that if f(x) is assumed
to be of limited total fluctuation in the neighborhood at the right of the point
z = — 1 (as already implied in the conditions which we have placed upon f(x)
in order that relation (III), be satisfied) then the third integral of (162) has
the properties desired. In fact, following again remark (1) of § 56, we may
then show that the integral in question may be made less in absolute value than
any preassigned positive quantity by taking ¢ sufficiently small, this being true
uniformly for all values of n sufficiently large. To see this, if we let the accent
denote differentiation with respect to 6, we have from (157)

—2+¢

(163) , fA 4 den, 1,t)dt = — } f f(cos 8) Y'(cos 6)d6,
_ Je—n
where 7 depends only upon ¢ and vanishes when £ = 0. Since f(z) has been
assumed to be of limited total fluctuation in the neighborhood at the right of the
point 2 = — 1, the same function is either monotone in this interval or consists
of the sum of a finite number of such functions.?® Evidently, then, without loss
of generality we may assume in the study of (163) that f(cos ) is monotone in
the interval r — n < 0 < 7.

This being the case, let us apply the second law of the mean for integrals to
the second member of (163). We obtain

—2+4 f

S0+ Deln, 1,0d = = 3= 145 [ Va'(eos 0)ds
—3f(—=140) [' Y./(cos 6)do,

vVwx-m

which, upon recalling that Y,(cos 7) = 0, reduces to
=3 {f(—= 14§ — f(— 14 0)} Ya(cos (v — m1)) + 3f(— 1+ £) Yu(cos (x — 7)),
and of the two terms here appearing, the first, upon recalling that

| Yalcos (xr — m)) | = 2,
» Cf. § 46, p. 110.
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may be made arbitrarily small in absolute value by choosing £ sufficiently small,
while the second (¢ having been fixed) vanishes as n = oo, it being observed
here that 7 does not depend upon 7, so that we are dealing with the expression
Y. (cos 0), wherein 0 has a fixed value such that 0 < 6 < 7.

Similarly, it appears that the last of the integrals (162) has the properties
desired in case f(z) is assumed to be of limited total fluctuation in the neighbor-
hood at the right of the point = = 1.

In summary, then, we reach the following theorem respecting the convergence
of the series (142):

THEOREM 1. If the function f(x) of the real variable x satisfies the following
three conditions:

(@) remains finite throughout the interval (— 1, 1) with the possible exception of
a finite number of points;

(b) s such that the integral

1
INCLE
exists;
(c) s of limited total fluctuation in an arbitrarily small neighborhood at the
right of the point x = — 1 and in a similar neighborhood at the left of the point
x = 1, then the series

(164) Sak@;  w="7" [ foXiis,

in which X,(x) represents the polynomial of Legendre (Zonal Harmonic) of order n,
will converge at any point  (— 1 < z < 1) in the arbitrarily small neighborhood
of which f(z) has limited total fluctuation, and the sum will be

3 [f(z — 0) + f(= + 0)].

Moreover, the convergence will be uniform (§ 45) to the limat f(x) throughout any
interval (a’, b’) enclosed within a second interval (ay, b,) such that — 1 < a; < a'
< bV < by < 1 provided that f(x) i3 continuous throughout (a’, b’) inclusive of its
end potnts and has limited total fluctuation throughout (ay, by).

Also, if we replace conditions (a), (b) and (c) by the single more restrictive con-
dition; wz., that f(z) be of limited total fluctuation throughout the whole interval
(— 1, 1) then the same series will converge when x = — 1 or 2 = 1 and the respec-
tive sums will be f(— 1+ 0), f(1 — 0).%°

30 The results contained in this theorem, both for the case of an internal point (— 1 <z <1)
and for that of the end points z = =+ 1, appear to have been first established rigorously by Hosson
(Proc. London Math. Soc., Vol. 6 (1908), p. 395. Ibid., Vol. 7 (1909), p. 39). DinNr’s consideration
of the problem (“Serie di Fourier, etc.,” pp. 278-282), although outlining all the essential steps
of the required analysis, is but fragmentary, especially that which concerns the end points. In
HogssoN’s second paper, just noted, less stringent conditions for f(z) are obtained than those
of the Theorem above, the same resulting from an extended critical study of the behavior of
Xa(z), (— 1 =z =1) for large values of n (l. c., pp. 25-30).
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69. We proceed to consider the summability (r = 1) of the series (142) and
in so doing we shall make use of the following well known result:3
“If we place '

(65 nr) = 3= @n+ DXaleos )
and ”
1

(166) &'(v) = | [80() + &1(7) + -+ - + 8(V)]
then for large values of n we have

4 cos Y

oy = L 2 3\, _ 5], 5

(167) sa'(y) = e cos[(n+§)'y—-4—]+ 5'(7) t»

N7 sin g— (2 sin y)¥

where 1112 0a’(v) = O uniformly forall e =y =7 — ¢ (¢ > 0).”

It will thus appear that although the summability (r = 1) of (142) at an
internal point (— 1 < z < 1) cannot be assured under conditions so slightly
limitive as those met with in the corresponding studies of Fourier series (§ 46)
or the Bessel expansions (§ 67), nor indeed under restrictions upon f(z) which
are any less than those stated in Theorem I for convergence (r = 0) at such a
point, yet at the end points £ = & 1 the conditions for summability may be
stated in a less restrictive form than the corresponding ones in Theorem I.

We begin by noting that, as a result of (144) and (145), the function ®(a, n, t)
corresponding to the present development is such that

1
q’(n’ a, t) = m [‘P(ni a, t) + ‘P(n - 1) a, t) + M + ¢(Oy a, t)],
where

om e )= 5 [ 2 @nt DXulcos 1)de

the angle ¥ being here determined, as in § 68, through the following relations:
a=-cos®, a-+t=cosf, cosy = cosfcosb + sinfsin ' cos (¢ — ¢'),
it being understood that ¢’ is assigned any fixed value (0 = ¢’ < 27) independent
of 6.

Thus we may write

1 2w
(168) 2,00 =32 [ s(nde,

where s,’(y) is defined as in (166).
Now, when £ is such that — ¢ = ¢ = ¢ (as occurs in relation (II) of the general
theorem of § 52) the corresponding values of v pertaining to the neighborhood

31 Cf. FEJER, l. c., p. 107.
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of the (fixed) point (6’, ¢’) lie in an interval of the form 0 = v = 5 where 3
vanishes with e. Thus, while formula (168) is general, holding for all values of
a and ¢ with which we are concerned in applying the theorem of § 52 to the
present development, we are unable to determine whether relation (II)’ of the
same theorem is here satisfied until more than is given by (177) is known of
the behavior of s,'(y) for large values of n. A critical study of s,'(y) for 0 = v
= ¢ is here needed and such study has apparently not yet been made.

Again, it cannot be argued from (167) and (168) that relation (III) of § 51
is here satisfied by ®(n, a, ) (cf. remark (2), § 56). This relation, however, is
seen to be satisfied if we confine ourselves to the intervals — 1 —a+ £ =1t
=E—¢e=t=1—a—¢(E>0insteadof — 1 —a=t=—¢ e=t=1—gq,
but this is nothing more than can be at once inferred from the properties
already pointed out in § 68 regarding the present function ¢(n, a, f). It may
be noted that if we could show that s,’(y) when considered for all values of n
and for values of v within the interval # — ¢ = ¥ = 7 remains less than a con-
stant (dependent only upon ¢) the function ®(n, o, t) would come to completely

satisfy relation (III) as a result of (167) and (168). That such is true of s,'(v)
seems probable.

The conclusion from these remarks respecting summability (r = 1) at an
internal point z (— 1 < z < 1) is therefore purely negative, except naturally
.that such summability will necessarily be present®® under the conditions for
convergence (r = 0) as given in the theorem of the preceding §.3°

Turning to a consideration of the summability (r = 1) of the series (164)
when £ = — 1 or z = 1, we see upon reference to the results obtained for
o(n, — 1, 1) and ¢(n, 1, t) in § 68 that relations (I),, (II)s, (I)» and (II), of § 55
are satisfied by the present functions ®(n, — 1,¢) and ®(n, 1, f) (regarded as
functions of the type ¢ there indicated) except that doubt exists in the case
of (I)s and (I)» when ¢ belongs to the respective intervals 2 — ¢ =t =2,
—2=t=—2+4 & (¢ >0). In other words, nothing more can be said of
®(n, — 1,¢) and $(n, 1, t) than was said of ¢(n, — 1, ¢) and ¢(n, 1, ) in § 68.
This, however, is not the case in dealing with relations (III), and (III),.

Thus, in (IIT), we have to consider the expression

1
(p(n: 11 t) = m [‘o(ny 1: t) + (0("' - 1: 1: t) S R (0(0: 1: t)]:
where

e(n, 1,8 = 3 2 (2n + 1)Xa(cos 6) = }s.(6).
n=0
We may therefore write
(169) ®(n, 1,1 = s.(0),
nCf, § 4.
8 Cf. CaarMaN, Quart. Journ. Math., Vol. 43 (1911), p. 51. For summability (r =1)

CHAPMAN places no restrictions upon f(z) at the extremities of the interval (— 1 < z < 1) other
than those for the whole interval.
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so that upon introducing (167) we see that (III), is here satisfied for all values
of ¢ in the interval — 2+ £ =t = — ¢. For the remaining values of ¢ with
which (III); is concerned, . €., — 2 =t = — 2 + £, doubt exists.

Likewise, relation (III), is seen to be satisfied by ®(n, — 1, t) except possibly
for values of ¢ in the interval 2 — £ =t = 2.

From the general theorem of § 52 together with the remarks in § 56 and the
investigations already made in § 68 of the last two of the integrals (162) we
reach the following

TaEOREM II. If the function f(x) of the real variable x satisfies conditions
(a), (b) and (c) of the Theorem I (§ 68) then the series (164) when considered for
the values x = = 1 will be summable (r = 1) to the respective limits f(1 — 0),
f(=1+4+0).

70. The difficulties which present themselves in the study of the summability,
r = 1, of the series (164) disappear in large measure when we consider the same
problem with r = 2. This fact was first pointed out by FEJ£r* who confined
himself, however, to functions f(z) having somewhat greater limitations than we
shall here find necessary in view of the general theorems of § 52. In what
follows we shall make use without further remark of the following two preliminary
results which may be found established on pages 81-87 of FEJ£R’s original memoir.

“ Having defined s,(y) and s,’(y) as in (165) and (166), if we place®

1
n+1

(170) 8"(y) =

then

“(1) Whatever the values of n and v (0 < ¥ < =), 8,"/(¥) is never negative.

“(2) For values of ¥ such that ¢ = 4 = =, ¢ being arbitrarily small but > 0,
the expression 8,”(y) converges (n = <) uniformly to zero.”

These results being premised, we shall now endeavor to apply the general
theorem of § 52 to the present development.

Just as we found the formula (168) for the function ®(n, «, t) arising in the
study of the summability, r = 1, so it appears that if we represent by y¥(n, o, t)
the corresponding function which arises when r = 2, we shall have

[so'(y) + /() + - -+ + 8/ (M)]

1 2w
an) Ve =g [ s tnde,
where s,’’(vy) is given by (170). Whence, upon using result (1) above, we see
that
j |¥(n, a, t)|dt = — f ¥(n, o, t)dt.

Thus, in view of the fact that the function ¢(n, o, t) (cf. (144)) and hence

# Cf. Math. Annalen, Vol. 67 (1909), pp. 76-109.
38 Thus, 8,"(y) comes to represent Holder’s second mean for the series (164).



DEevELOPMENTS IN LEGENDRE FUNCTIONS 177

¥(n, a, t) satisfies relation (II) of the theorem of § 51 (as shown in § 68) it follows
that the present function ¥(n, a, t) satisfies relation (II)’ of § 52.

Moreover, if we avail ourselves of result (2) above, it appears from (171) that
¥(n, o, t), when regarded as one of the functions of the type ¢(n, a, t) of § 51,
satisfies relation (III) of the same §.

It remains but to note that Y(n, a, t), when considered as one of the functions
o(n, a, t) of § 51 satisfies relation (I) of that §, as a result of our analysis in § 68
in order to see that the conditions for the use of the general theorem of § 51 are
here all satisfied.

As regards the summability (r = 2) of the series (164) when 2 = £ 1, it is
easily seen that ¥(n, 1, ) and Y(n, — 1, f) satisfy respectively all the conditions
demanded by the general theorems VII and VIII of § 55. Thus, upon referring
to (157) and recalling that Y,.(cos 6) = Xp41(cos 6) + X,a(cos 6), we have but
to make use of result (2) above to see that ¥(n, 1, £) satisfies relation (I); (a =— 1,
b=1, G = 1) of Theorem VI (§ 55). Relation (II)y’ of Theorem VIII (§ 55)
is also satisfied, as follows from the fact established in § 68 that ¢(n, 1, ) satis-
fies (IT),, Theorem VI (§ 55), while from result (1) above, we may write

£|‘P(n, 1,8)|dt = —£¢(n, 1, .

Finally, it follows from (169) that ¥(n, 1, {) = 4s,’/(6) so that by applying result
(2) above we see that ¥(n, 1, t) satisfies relation (III),, Theorem VI (§ 55).

Upon noting the corresponding results concerning y(n, — 1, ¢) and applying
the Theorems of § 55 we reach in summary the following

Traeorem III. If f(x) be any function which, when considered throughout the
interval (— 1, 1), satisfies conditions (A) and (B) of Theorem I (§ 51) then the series
(164) will be summable (r = 2) at any point x (— 1 < x < 1) for which the limits
f(x — 0), f(x + 0) exist and the sum will be

3 (f@—0) + f(z+ 0)].

Moreover, the summability will be uniform (§ 45) to the limit f(x) throughout
any wnterval (a’, b’) such that — 1 < a’ < b’ < 1 provided that at all points within
(a’, b’) inclusive of the end points the function f(z) 18 continuous.

Under the same conditions (A), (B) the series when considered for the values
z= — 1 and x = 1 will be summable (r = 2) to the respective limits f(— 1 + 0),
f( — 0) provided only that these limits exist.3®

% Interesting results have been obtained by PLANCHEREL (Rend. del Cir. Mat. di Palermo,
Vol. 33 (1912), pp. 41-66) relative to the summability of the Legendre developments when,

instead of adopting the Holder definition of sum, one employs that of De la Vallée Poussin (see
footnote, p. 77).
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1. Proof of statement (I), § 46. It is desirable for the purpose to establish the following two
lemmas:

Lemma I. If a and b are any two real numbers such that either — » + e =b <a= — ¢
ore=a <b= 7 — ¢ ¢ being an arbilrarily small positive quantity, and if k 8 a posilive quantity
which may increase indefinitely according to any law whatever, then

sin k¢
@ Jim [ Gy dt = 0.
and the limit is approached uniformly for all the indicated values of a and b.

In order to establish this, let us suppose first that a and b are positive and divide the cases
which may then arise into three sets as follows:

(@ a<b= (b)a<-;—<b; (c)%§a<b.

= 2 l
In (a) we have merely to note that as ¢ varies from a to b the function 1/sin ¢ is always posi-
tive and continually decreasing so that we may apply the second law of the mean for integrals

and write - ;
fm.nktdt= 1 emktdt 1 [coska—-coski
e gin ¢ gin a sin a k
where ¢ is a certain quantity lying betwecen a and b. Hence, in (a) we shall have
2 =_2 2
@ =ksina=ksine’

from which the indicated result becomes evident.
In (b) we write

" sin kt */2gin kt b sin k¢
@ -I; nt L sin ¢ % +j;/2‘sint a,
where the first integral of the second member falls in group (a), while the last one, after making
the substitution ¢ = » — ¢/, may be written
f'/’ sin k(x — t)

b sin ¢

sm kt
sin ¢

=.

dt.

In this integral as ¢ varies from = — b to /2 the function 1/sin ¢ is always positive and continually
decreasing so that we may again apply the second law of the mean and write

'ﬂsmk(-r—t) _ 1 e _ cos kb — cos k(x — £)
S s =g o L [ sink(r -t = mb[ o

where » — b < t < x/2.
Whence,

‘f'/’sm k(x — ()dt! <

gin ¢ ksm

after which the indicated result becomes evident as before.
In (c) we have, after making the substitution t = » — ¢/,

j"’si.n ktdl - f' —agin k(x — t)dt

a gin{ -b sin ¢

where e =r — b < r — a = /2. Hence, proceeding as in case (a) we may write (2).
178
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Upon noting that the absolute value of the expression (1) remains unchanged when — a and
— b are substituted for a and b respectively, the Lemma thus becomes completely established.
Lemma I1. If k be a positive quaniily increasing according to any law whatever and if b be a
constant (independent of k) and such that 0 < e = b= x — ¢, ¢ being an arbitrarily small positive
quantity, then
sin kt
—dl = 3
k= V0 sin sint

and the limit is approached uniformly for all the indicated values of b.

In order to prove this let us indicate by &’ the first odd number equal to or greater than k
and let usplacek = k' — ysothat 0 =y = 2.

We may then write

sin k¢ « gin k¢ sin k¢

o sint ’j; ant @t wme

in which the last term, by reason of Lemma I, approaches uniformly the limit zero as k = =,
Also, we may write

« gin k¢ 'sm(k'—-y)t - smk'teoe‘yt 'cosktsmyt
j;sintdt f T sint & - f

d,

and by reason of the general formula f(8) = f(0) + 3/'(83); 0 < 6 < 1, we may place

cosyt =1 — vt sin vi¢
where 0 = v1 = v < 2 and hence

« gin k¢ < gin k't 1tsmktsm'nt 'cosktsm'yt
o  LEre-LETe-Lrrar e ]

Of the three integrals last appearing on the right, the first may be written in the form

o EXORERY, L YO

since, if n be the integer such that ¥’ = 2n + 1, we have
j;r/!smkltdt f'“[l+ 3cos2nt]dl=zo

Upon applying Lemmal to the last integral of (5) it thus appears that the integral of (4) in
question approaches the limit »/2 as k = .

As regards the last two integrals of (4), it is at once evident that each of these may be made
arbitrarily small in absolute value with ¢ and with this the proof of the Lemma becomes complete.

The proof of (I) of § 46 may now be made as follows:

We may write

Jy et it = -3 ([ +f°)

. 2n_+_1‘

1 f-</2gin (2n + l)t lf'I’sm (2n + l)t
i

and when — 2x + ¢ <t < — ¢ we have — x + ¢/2 < /2 < — ¢/2 80 that the first term here
appearing in the last member approaches uniformly the limit zero when n = «, as appears
from Lemma I. The last term of the same member, however, approaches the limit — % as follows
from Lemma II.

Similarly, when ¢ < ¢ < 2x — ¢ the desired result follows directly from Lemmas I and II
upon writing

1 Cf. Dini, Serie di Fourier, etc., § 19.
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n
aT, .
¢ 1 ¢ J 2 1 2gin (2n + 1)t 1 fe2gin (2n + 1)t
j;?(“rt)d“i"‘(‘l: +j;)———am£ dl-; I Y d¢+; o — @nt dt.
2

2. Proof of statement (II) of § 46. We first establish the following Lemma:

Lemma III. If k is a positive quantily which may increase indefinitely according to any law
whatever we may write? for any value however great of k and for any value of t such that — x[2 =t = «/2:

¢ gin kt
| 0 m d¢| <.

In fact, considering that k has any particular value among those which it may take and
considering first the cases in which ¢ is positive, we observe that since the function sin k¢ vanishes
by changing sign at the points =/k, 2x/k, 3x/k, - - -, while the integral

¢ a1 k‘
® it
is positive from ¢ = Otot = w/k, this integral has maximum values at the points »/k, 3x/k, 5«/k, * -
and minimum values at the points 2x/k, 4=x/k, - -.

Moreover, the greatest of these maximum values is

/* gin k¢

@ o
for we may show as follows that the difference between any maximum value and the next suc-
ceeding one is positive:
Let
o= BADT g o @A (1,23 . aa BEIT2)

be any two successive points belonging to the set =/k, 3=/k, 5x/k, ---. The difference between
the corresponding maximum values of the integral in question is

a1 o\ sin ki s gin kt 1 kossgint
(L -L") aie -~ m"‘—-zf —dt=
koy m%

1 +2)» 8in ¢ 1 +or 8Dt .1 et ) S 1
‘E‘ : g‘“‘"kf’. Nl kf ’“”[._z .t+r]‘”'
@+ S0 @+ne S TE @+ singp sm—g

In the last integral here appearing the factor sin ¢ is negative (or zero) for all the values of ¢ be-
tween (28 + 1)x and (28 + 2)~ and since, for the same values of ¢, we have

t t4+x__=x
0< % < —-k—éé',
the factor appearing in square brackets in the last integral is positive when
s+ )r=t= (28 + 2)x.

In like manner it appears that the least of the minimum values of (6) is
* /¥ gin kt
S e
and that this value is positive together with all values of the integral (6) when 0 < t =< 2x/k.

Thus, for all values of ¢ such that 0 < ¢ = «/2 the integral (6) is positive and in summary
we may say that the greatest absolute value of (6) when 0 = ¢ = /2 is given by (7). But

2 Cf. Ding, L. c., §18. .
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-gin kt
® mn kt sm sin kit Ib kt;
0 sm tl j.' = ‘

0<¢1<,?

ll

and since for such values of ¢; this expression is < 1 the Lemma now follows provided ¢ = 0.
In order to prove it also for the cases in which ¢ < 0 we need but to note that

jh‘sm kt sm kt

(]

#-

w4

By use of Lemma III the proof of (II), § 46, is immediate since we have

sin2n+lt
1 2 1
'j:¢(ﬂ;l)dt|=§; f—— 7 dt ==
) sing

A poessible choice of the constant A of (II) is therefore A = 1.

3. Proof of Statement (II)’, § 47. We shall here establish the following general lemma:

Lemma IV. If k = na + 8 where n takes only positive integral values and a and B8 are any
two constants (independent of n) of which a > 0, then, corresponding to any ¢ > O such that ¢ < x/2,
¢ < x/a, we shall have for all values of n mﬁcimlly large

3gin (2n + l)t
0 sin ¢

<1l

1 » dt
8) o 20 m <g
where g 18 a certain constant independent of both n and e.
Since

sm sin (— ki) kt) sin k¢
sin (— &) = Fn¢’

it will evidently suffice to prove the lemma for the expression

® N
instead of (8).
Now, we have

® sin k¢
n=0 8iN ¢

Idt

sin kt 1
m’an—‘[&nndmm‘l‘m”dmﬁ"y

so that by application of the well known formulae
. sin 2 sin (n + 1) 3
(10) S snng =—————~
»=0 . T
sy

cos =X in n+ l);

(11) i 08 na= —2 2 ,
n=0 . T
sm3
we obtain . in ke . .
(3 " sin (] (3
(12) A 3557 @ <3 0w, 0a +1 [0 v, 3at,
where .
sin "% sin——(” + 1at sm(”_‘*'l_)“_‘ 8In Bt
2 2 - 2 ol
1= |5t T Chall R sin |

in
2
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Now, for the given value of « we may take n so large that

¥ _ <
) m+Da"°
and write
¢ w/(n+1)a
g::v when ‘l; wld‘ B J; v“d‘ +L.l('+l)‘ WId‘-
’
- 3
e may wrte 0<t<m<l<§
in Bt in " gin B
2 2 na 2 na » wma
gnt |<& "2\ na <2 2772
2
and in like manner
sin(n -{-21)51 ain(n + 1)od
2 x, x
(14) !inﬁt <(ﬂ+l)m<(ﬂ+l)'§, 0<t<—(ﬁ+l)a'
2 2

Thus it appears that the first term on the right in (13) is less than (x3#/8). Again, the second
term on the right in (13) may be put into the form

ot
2 gt Datl ¢ ¢t N[ 2 |de
« -/(~+n-|m2°m 2 l(dnt)(smﬁt)F'
2

which is less than 9 ' -
« L 3 t__~«
« ./(..m(i) =g+ +50.
Thus we have . - -
e L 4
nlovasE+ o,

from which we see that the first term on the right in (12) has the property indicated of (8). Like-
wise, the same is scen to be true of the second term on the right in (12) with which the proof
becomes complete.

The proof of (II)’ of § 47 follows by considering the special case in whicha = 1, § = }.

4. Lemma V. With k defined as in Lemma IV we have

(15) lim lf_l iocosktldz =0,
n=l

n=n N

where ¢ i8 any positive constant such that e < 1, e < x/a.
As in the study of (8) it will here suffice to prove the lemma for the expression obtained
from (15) by replacing the — e of the lower limit of integration by 0.
Now, we have
cos kt = cos nat cos Bt — sin nat sin S,

8o that upon using formulae (10) and (11) we obtain
1 e » 2 e
A |”§°mk¢|d¢ <2 [ Ha,
H=— 2 |

sinﬁt
2

where
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For the given value of « we may take n so large that

x
o+ Dha<®
and write P
e e
(16) IN:CENN Ha+ 7 Hat
From (14) it appears that the first term here appearing on the right is less than »*/2a.
Again, the second term on the right in (16) may be put into the form

[
2/ it 2 |d
a '/('H-Ulsm 2 . gt t’
2

which is less than 9 a ¢ )
r\di _ = n 4+ 1)ea
e (AL RV E

2 (.. x, 2. (n41ea
20 Hifj< = 4 2 jog (T 12,

Thus we have

from which the truth of the lemma becomes evident.
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clubs. Most of the book is about mathematics and mathematicians, rather
than on mathematics, and is devoted to a brief discussion of some of the
principal aids to the student who is just beginning to do independent
mathematical work. It includes a brief consideration of the greater Fer-
mat Theorem, for the proof of which a large prize is now outstanding.
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